Skip to main content

Advertisement

Log in

A global genomic view on LNX siRNA-mediated cell cycle arrest

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

LNX protein is the first described PDZ domain-containing member of the RING finger-type E3 ubiquitin ligase family. Studies have approved that LNX could participate in signal transduction, such as Notch pathway, and play an important role in tumorigenesis. In this study, we found that down-regulation of LNX resulted in G0/G1 cell cycle arrest in G0/G1 phase in HEK293 cells. To explore the molecular mechanism of this phenomenon, we employed expression microarray to comparatively analyze the genome-wide expression between the LNX-knockdown cells and the normal cells. We also used quantitative real-time PCR to further confirm the differential expression patterns of 25 transcripts involved in cell cycle. Combined with known information about genic functions, signal pathways and cell cycle machinery, we analyzed the role of endogenous LNX in cell cycle. The results suggest that down-regulation of LNX could result in cell cycle arrest in G0/G1 phase through inhibition of β-catenin, MAPK, NFκB, c-Myc-dependent pathway and activation of p53, TGF-β-dependent pathway. This study provides new perspectives on LNX’s pleiotropic activities, especially its essential role in cell proliferation and cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lamprecht G, Seidler U (2006) The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol 291:G766–G777

    Article  PubMed  CAS  Google Scholar 

  2. Bilder D (2001) PDZ proteins and polarity: functions from the fly. Trends Genet 17:511–519

    Article  PubMed  CAS  Google Scholar 

  3. Tsunoda S, Sierralta J, Sun Y et al (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388:243–249

    Article  PubMed  CAS  Google Scholar 

  4. Maudsley S, Zamah AM, Rahman N et al (2000) Platelet-derived growth factor receptor association with Na+/H+ exchanger regulatory factor potentiates receptor activity. Mol Cell Biol 20:8352–8353

    Article  PubMed  CAS  Google Scholar 

  5. Voltz JW, Weinman EJ, Shenolikar S (2001) Expanding the role of NHERF, a PDZ-domain containing protein adapter to growth regulation. Oncogene 20:6309–6314

    Article  PubMed  CAS  Google Scholar 

  6. Park J-H, Lin M-L, Nishidate T et al (2006) PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res 66:9186–9195

    Article  PubMed  CAS  Google Scholar 

  7. Gaudet S, Branton D, Lue RA (2000) Characterization of PDZ-binding kinase, a mitotic kinase. Proc Natl Acad Sci 97:5167–5172

    Article  PubMed  CAS  Google Scholar 

  8. Abe Y, Matsumoto S, Kito K et al (2000) Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in testis and activated lymphoid cells. J Biol Chem 275:21525–21531

    Article  PubMed  CAS  Google Scholar 

  9. Reed JA, Lin Q, Chen D et al (2005) SKI pathways inducing progression of human melanoma. Cancer Metast Rev 24:265–272

    Article  CAS  Google Scholar 

  10. Colmenares C, Stavnezer E (1989) The ski oncogene induces muscle differentiation in quail embryo cells. Cell 59:293–303

    Article  PubMed  CAS  Google Scholar 

  11. Chen W, Lam SS, Srinath H et al (2007) Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling. J Biol Chem 282:11365–11376

    Article  PubMed  CAS  Google Scholar 

  12. Leong GM, Subramaniam N, Figueroa J et al (2001) Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-β-dependent transcription. J Biol Chem 276:18243–18248

    Article  PubMed  CAS  Google Scholar 

  13. Kansaku A, Hirabayashi S, Mori H et al (2006) Ligand-of-Numb protein X is an endocytic scaffold for junctional adhesion molecule 4. Oncogene 25:5071–5084

    PubMed  CAS  Google Scholar 

  14. Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of Numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76:477–491

    Article  PubMed  CAS  Google Scholar 

  15. Spana EP, Kopczynski C, Goodman CS et al (1995) Asymmetric localization of Numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121:3489–3494

    PubMed  CAS  Google Scholar 

  16. Vervoort M, Dambly-Chaudiere C, Ghysen A (1997) Cell fate determination in Drosophila. Curr Opin Neurobiol 7:21–28

    Article  PubMed  CAS  Google Scholar 

  17. Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: Interaction of Numb and Notch. Neuron 17:27–41

    Article  PubMed  Google Scholar 

  18. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  PubMed  CAS  Google Scholar 

  19. Nie J, McGill MA, Dermer M et al (2002) LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO 21:93–102

    Article  CAS  Google Scholar 

  20. Pray TR, Parlati F, Huang J et al (2002) Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Update 5:249–258

    Article  CAS  Google Scholar 

  21. Liu L, Ji C, Chen J et al (2008) A global genomic view of MIF knockdown-mediated cell cycle arrest. Cell Cycle 7:1678–1692

    Article  PubMed  CAS  Google Scholar 

  22. Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3:255–268

    Article  PubMed  CAS  Google Scholar 

  23. Chen J, Xu J, Zhao W et al (2005) Characterization of human LNX, a novel ligand of Numb protein X that is downregulated in human gliomas. Int J Biochem Cell Biol 37:2273–2283

    Article  PubMed  CAS  Google Scholar 

  24. Liu W, Zhu FX, Wu QY et al (2007) Effects of ubiquitin ligase LNX on epithelial cell junction formation. Chin J Biochem Mol Biol 23:463–468

    CAS  Google Scholar 

  25. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  PubMed  CAS  Google Scholar 

  26. Xia X, Su Q, Soriano S et al (2001) Loss of presenilin 1 is associated with enhanced β-catenin signaling and skin tumorigenesis. Proc Natl Acad Sci USA 98:10863–10868

    Article  PubMed  CAS  Google Scholar 

  27. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115:3977–3978

    Article  PubMed  CAS  Google Scholar 

  28. Katoh M, Katoh M (2006) Cross-talk of WNT and FGF signaling pathways at GSK3b to regulate β-catenin and SNAIL signaling cascades. Cancer Biol Ther 5:1059–1064

    Article  PubMed  CAS  Google Scholar 

  29. Hoffmans R, Basler K (2007) BCL9-2 binds Arm/β-catenin in a Tyr142-independent manner and requires Pygopus for its function in Wg/Wnt signaling. Mech Dev 124:59–67

    Article  PubMed  CAS  Google Scholar 

  30. De D, Chen A, Wu Z, Lv S, He G, Qi Y (2009) Overexpression of Pygopus2 protects HeLa cells from vinblastine-induced apoptosis. Biol Chem 390:157–165

    Google Scholar 

  31. Lee Young-Ho, Stallcup MR (2006) Interplay of Fli-I and FLAP1 for regulation of b-catenin dependent transcription. Nucleic Acids Res 34:5052–5059

    Article  PubMed  CAS  Google Scholar 

  32. Ohshima R, Ohta T, Wu W et al (2007) Putative tumor suppressor EDD interacts with and up-regulates APC. Genes Cells 12:1339–1345

    Article  PubMed  CAS  Google Scholar 

  33. Kikuchi A (2000) Regulation of β-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 268:243–248

    Article  PubMed  CAS  Google Scholar 

  34. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Google Scholar 

  35. Linke SP, Clarkin KC, Di LA, Tsou A, Wahl GM (1996) A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 10:934–947

    Article  PubMed  CAS  Google Scholar 

  36. Le Cam L, Linares LK, Paul C, et al (2006) e4f1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127:775–788

    Google Scholar 

  37. Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  PubMed  CAS  Google Scholar 

  38. Li H, Watts GS, Oshiro MM et al (2006) AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene 25:5405–5415

    Article  PubMed  CAS  Google Scholar 

  39. McPherson LA, Loktev AV, Weigel RJ (2002) Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem 277:45028–45033

    Article  PubMed  CAS  Google Scholar 

  40. Li Q, Dashwood RH (2004) Activator protein 2alpha associates with adenomatous polyposis coli/beta-catenin and Inhibits beta-catenin/T-cell factor transcriptional activity in colorectal cancer cells. J Biol Chem 279:45669–45675

    Article  PubMed  CAS  Google Scholar 

  41. Ihrie Rebecca A, Attardi Laura D (2004) Perp-etrating p53-dependent apoptosis. Cell Cycle 3:267–269

    PubMed  CAS  Google Scholar 

  42. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis. Multiple pathways and activation of p53-up-regulated modulator of apoptosis (Puma) and Noxa by p53. J Biol Chem 281:7260–7270

    Article  PubMed  CAS  Google Scholar 

  43. Myung K, Braastad C, He DM, Hendrickson EA (1998) KARP-1 is induced by DNA damage in a p53- and ataxia telangiectasia mutated-dependent fashion. Proc Natl Acad Sci USA 95:7664–7669

    Google Scholar 

  44. Braasted CD, Leguia M, Hendrickson EA (2002) Ku86 autoantigen related protein-1 transcription initiates from a CpG island and is induced by p53 through a nearby p53 response element. Nucleic Acids Res 30:1713–1724

    Article  Google Scholar 

  45. Anazawa Y, Arakawa H, Nakagawa H et al (2004) Identification of STAG1 as a key mediator of a p53-dependent apoptotic pathway. Oncogene 23:7621–7627

    Article  PubMed  CAS  Google Scholar 

  46. Yoon H, Liyanarachchi S, Wright FA et al (2002) Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci USA 99:15632–15637

    Article  PubMed  CAS  Google Scholar 

  47. Datto MB, Li Y, Panus JF et al (1995) Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549

    Article  PubMed  CAS  Google Scholar 

  48. Kamesaki H, Nishizawa K, Michaud GY et al (1998) TGF-beta 1 induces the cyclin-dependent kinase inhibitor p27Kip1 mRNA and protein in murine B cells. J Immunol 160:770–777

    PubMed  CAS  Google Scholar 

  49. Amati B (2001) Integrating Myc and TGF-beta signalling in cell-cycle control. Nat Cell Biol 3:E112–E113

    Article  PubMed  CAS  Google Scholar 

  50. Yao X, Chen X, Cottonham C, Xu CL (2008) Preferential utilization of Imp7/8 in nuclear import of Smads. J Biol Chem 283:22867–22874

    Article  PubMed  CAS  Google Scholar 

  51. Kim T-D, Shin S, Janknecht R (2008) Repression of Smad3 activity by histone demethylase SMCX/JARID1C. Biochem Bioph Res Commun 366:563–567

    Google Scholar 

  52. Yamamura Y, Hua X, Bergelson S et al (2000) Critical role of Smads and AP-1 complex in transforming growth factor-b-dependent apoptosis. J Biol Chem 275:36295–36302

    Article  PubMed  CAS  Google Scholar 

  53. Pulverer BJ, Hughes K, Franklin CC et al (1993) Co-purification of mitogen-activated protein kinases with phorbol ester-induced c-Jun kinase activity in U937 leukaemic cells. Oncogene 8:407–415

    PubMed  CAS  Google Scholar 

  54. Norris JL, Baldwin AS Jr (1999) Oncogenic Ras enhances NF-kappaB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J Biol Chem 274:13841–13846

    Article  PubMed  CAS  Google Scholar 

  55. Baumann B, Weber CK, Troppmair J et al (2000) Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 97:4615–4620

    Article  PubMed  CAS  Google Scholar 

  56. Chang F, Steelman LS, Shelton JG et al (2003) Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int J Oncol 22:469–480

    PubMed  CAS  Google Scholar 

  57. Zhu Y, Wang Y, Xia C et al (2004) WDR26: a novel Gβ-like protein, suppresses MAPK signaling pathway. J Cell Biochem 93:579–587

    Article  PubMed  CAS  Google Scholar 

  58. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    Article  PubMed  CAS  Google Scholar 

  59. Maekawa M, Nishida E, Tanoue T (2002) Identification of the anti-proliferative protein Tob as a MAPK substrate. J Biol Chem 277:37783–37787

    Article  PubMed  CAS  Google Scholar 

  60. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  PubMed  CAS  Google Scholar 

  61. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  PubMed  CAS  Google Scholar 

  62. Frigo DE, Tang Y, Beckman BS et al (2004) Mechanism of AP-1-mediated gene expression by select organochlorines through the p38 MAPK pathway. Carcinogenesis 25:249–261

    Article  PubMed  CAS  Google Scholar 

  63. Lu A, Zhang F, Gupta A et al (2002) Blockade of AP1 transactivation abrogates the abnormal expression of breast cancer-specific Gene 1 in breast cancer cells. J Biol Chem 277:31364–31372

    Article  PubMed  CAS  Google Scholar 

  64. Lu A, Gupta A, Li C et al (2001) Molecular mechanisms for aberrant expression of the human breast cancer specific gene 1 in breast cancer cells: control of transcription by DNA methylation and intronic sequences. Oncogene 20:5173–5185

    Article  PubMed  CAS  Google Scholar 

  65. Piva R, Belardo G, Santoro MG (2006) NFkappaB: a stress-regulated switch for cell survival. Antioxid Redox Signal 8:478–486

    Google Scholar 

  66. Van Waes C (2007) Nuclear factor-kappaB in development, prevention and therapy of cancer. Clin Cancer Res 13:1076–1082

    Google Scholar 

  67. Baldwin AS Jr, Azizkhan JC, Jensen DE, Beg AA, Coodly LR (1991) Induction of NFkappaB DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol Cell Biol 11:4943–4951

    PubMed  CAS  Google Scholar 

  68. Kaltschmidt B Kaltschmidt C, Hehner SP, Dröge W, Schmitz ML (1999) Repression of NFkappaB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene 18:3213–3225

    Google Scholar 

  69. Mauro C, Pacifico F, Lavorgna A et al (2006) ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J Biol Chem 281:18482–18488

    Article  PubMed  CAS  Google Scholar 

  70. Dai P, Jeong SY, Yu Y, Leng T, Wu W, Xie L, Chen X (2009) Modulation of TLR signaling by multiple MyD88-interacting partners including leucine-rich repeat Fli-I-interacting proteins. J Immunol 182:3450–3460

    Article  PubMed  CAS  Google Scholar 

  71. Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776

    Article  PubMed  CAS  Google Scholar 

  72. Perez-Roger I, Kim SH, Griffiths B et al (1999) Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27Kip1 and p21Cip1. EMBO 18:5310–5320

    Article  CAS  Google Scholar 

  73. Vlach J, Hennecke S, Alevizopoulos K et al (1996) Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO 15:6595–6604

    CAS  Google Scholar 

  74. Staller P, Peukert K, Kiermaier A et al (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399

    Article  PubMed  CAS  Google Scholar 

  75. Claassen GF, Hann SR (2000) A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta-induced cell cycle arrest. Proc Natl Acad Sci USA 97:9498–9503

    Article  PubMed  CAS  Google Scholar 

  76. Bossone SA, Asselin C, Patel AJ et al (1992) MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci USA 89:7452–7456

    Article  PubMed  CAS  Google Scholar 

  77. Komatsu M, Li H-O, Tsutsui H et al (1997) MAZ, a Myc-associated zinc finger protein, is essential for the ME1a1-mediated expression of the c-myc gene during neuroectodermal differentiation of P19 cells. Oncogene 15:1123–1131

    Article  PubMed  CAS  Google Scholar 

  78. Wessely R, Hengst L, Jaschke B et al (2003) A central role of interferon regulatory factor-1 for the limitation of neointimal hyperplasia. Hum Mol Genet 12:177–187

    Article  PubMed  CAS  Google Scholar 

  79. Rizvi IA, Robinson K, McFadden DW, Riggs DR, Jackson BJ, Vona-Davis L (2006) Peptide YY reverses TNF-alpha induced transcription factor binding of interferon regulatory factor-1 and p53 in pancreatic acinar cells. J Surg Res 136:25–30

    Google Scholar 

  80. Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL (2002) Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene 21:7776–7785

    Article  PubMed  CAS  Google Scholar 

  81. Xie RL, Gupta S, Miele A, Shiffman D, Stein JL, Stein GS, van Wijnen AJ (2003) The tumor suppressor interferon regulatory factor 1 interferes with SP1 activation to repress the human CDK2 promoter. J Biol Chem 278:26589–26596

    Google Scholar 

  82. Shu F, Lv S, Qin Y et al (2007) Functional characterization of human PFTK1 as a cyclin-dependent kinase. Proc Natl Acad Sci USA 104:9248–9253

    Article  PubMed  CAS  Google Scholar 

  83. Han SH, Jeon JH, Ju HR et al (2003) VDUP1 upregulated by TGF-b1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22:4035–4046

    Article  PubMed  CAS  Google Scholar 

  84. Jeon JH, Lee KN, Hwang CY, Kwon KSKH, You KH, Choi I (2005) Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res 65:4485–4489

    Article  PubMed  CAS  Google Scholar 

  85. Jung P, Menssen A, Mayr D et al (2008) AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci USA 105:15046–15051

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program, 2007CB914304 and 2009CB825505), National Natural Science Foundation of China (No.: 30770427), Program for New Century Excellent Talents in University (NCET-06-0356) and Shanghai Leading Academic Discipline Project (B111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumin Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, D., Gu, S., Li, Y. et al. A global genomic view on LNX siRNA-mediated cell cycle arrest. Mol Biol Rep 38, 2771–2783 (2011). https://doi.org/10.1007/s11033-010-0422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0422-6

Keywords

Navigation