Skip to main content
Log in

13 is closely related to hematopoiesis in zebrafish

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) function as signal transducers and control many different physiologic processes. G proteins can be grouped into four families: Gs, Gi, Gq and G12. Gα13 belongs to the G12 family. In zebrafish, there are two isoforms of Gα13: Gα13a and Gα13b. We show here that knockdown of Gα13b in zebrafish results in hematopoietic and angiogenic defects. The Gα13b morphants don’t show complete loss of expression of gata1, pu.1 or flk until 35 hpf suggests that Gα13b is closely related to the development of hematopoietic cells. Further studies reveal that blood cells and vascular endothelial cells have undergone apoptosis through a p53-dependent pathway in Gα13b-depleted embryos. Injection of p53 morpholino could partially rescue the phenotype of Gα13b morphants. These data possibly demonstrate a new role for Gα13 in cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  2. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    Article  PubMed  CAS  Google Scholar 

  3. Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808

    Article  PubMed  CAS  Google Scholar 

  4. Gu JL, Muller S, Mancino V, Offermanns S, Simon MI (2002) Interaction of G alpha(12) with G alpha(13) and G alpha(q) signaling pathways. Proc Natl Acad Sci USA 99:9352–9357

    Article  PubMed  CAS  Google Scholar 

  5. Offermanns S, Mancino V, Revel JP, Simon MI (1997) Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275:533–536

    Article  PubMed  CAS  Google Scholar 

  6. Kimmel CB (1989) Genetics and early development of zebrafish. Trends Genet 5:283–288

    Article  PubMed  CAS  Google Scholar 

  7. Shivdasani RA, Orkin SH (1996) The transcriptional control of hematopoiesis. Blood 87:4025–4039

    PubMed  CAS  Google Scholar 

  8. Herbomel P, Thisse B, Thisse C (1999) Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126:3735–3745

    PubMed  CAS  Google Scholar 

  9. Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, Langenau DM, Delahaye-Brown A, Zon LI, Fleming MD, Look AT (2001) Myelopoiesis in the zebrafish, Danio rerio. Blood 98:643–651

    Article  PubMed  CAS  Google Scholar 

  10. Detrich HW 3rd, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI (1995) Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA 92:10713–10717

    Article  PubMed  CAS  Google Scholar 

  11. Brownlie A, Hersey C, Oates AC, Paw BH, Falick AM, Witkowska HE, Flint J, Higgs D, Jessen J, Bahary N, Zhu H, Lin S, Zon L (2003) Characterization of embryonic globin genes of the zebrafish. Dev Biol 255:48–61

    Article  PubMed  CAS  Google Scholar 

  12. Willett CE, Cortes A, Zuasti A, Zapata AG (1999) Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev Dyn 214:323–336

    Article  PubMed  CAS  Google Scholar 

  13. Lin F, Sepich DS, Chen S, Topczewski J, Yin C, Solnica-Krezel L, Hamm H (2005) Essential roles of G{alpha}12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements. J Cell Biol 169:777–787

    Article  PubMed  CAS  Google Scholar 

  14. Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, Marrs JA, Hamm HE, Solnica-Krezel L (2009) Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. J Cell Biol 184:909–921

    Article  PubMed  CAS  Google Scholar 

  15. Rekhtman N, Radparvar F, Evans T, Skoultchi AI (1999) Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 13:1398–1411

    Article  PubMed  CAS  Google Scholar 

  16. Hsu K, Traver D, Kutok JL, Hagen A, Liu TX, Paw BH, Rhodes J, Berman JN, Zon LI, Kanki JP, Look AT (2004) The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104:1291–1297

    Article  PubMed  CAS  Google Scholar 

  17. Kappel A, Schlaeger TM, Flamme I, Orkin SH, Risau W, Breier G (2000) Role of SCL/Tal-1, GATA, and ets transcription factor binding sites for the regulation of flk-1 expression during murine vascular development. Blood 96:3078–3085

    PubMed  CAS  Google Scholar 

  18. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106:951–961

    Article  PubMed  CAS  Google Scholar 

  19. Masuda Y, Takatsu Y, Terao Y, Kumano S, Ishibashi Y, Suenaga M, Abe M, Fukusumi S, Watanabe T, Shintani Y (2002) Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem Biophys Res Commun 293:396–402

    Article  PubMed  CAS  Google Scholar 

  20. Bagnato A, Spinella F (2003) Emerging role of endothelin-1 in tumor angiogenesis. Trends Endocrinol Metab 14:44–50

    Article  PubMed  CAS  Google Scholar 

  21. Leung T, Chen H, Stauffer AM, Giger KE, Sinha S, Horstick EJ, Humbert JE, Hansen CA, Robishaw JD (2006) Zebrafish G protein gamma2 is required for VEGF signaling during angiogenesis. Blood 108:160–166

    Article  PubMed  CAS  Google Scholar 

  22. Sumanas S, Lin S (2006) Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol 4:e10

    Article  PubMed  Google Scholar 

  23. Shan D, Chen L, Wang D, Tan YC, Gu JL, Huang XY (2006) The G protein G alpha(13) is required for growth factor-induced cell migration. Dev Cell 10:707–718

    Article  PubMed  CAS  Google Scholar 

  24. Versteeg HH, Spek CA, Slofstra SH, Diks SH, Richel DJ, Peppelenbosch MP (2004) FVIIa:TF induces cell survival via G12/G13-dependent Jak/STAT activation and BclXL production. Circ Res 94:1032–1040

    Article  PubMed  CAS  Google Scholar 

  25. Adarichev VA, Vaiskunaite R, Niu J, Balyasnikova IV, Voyno-Yasenetskaya TA (2003) G alpha 13-mediated transformation and apoptosis are permissively dependent on basal ERK activity. Am J Physiol Cell Physiol 285:C922–C934

    PubMed  CAS  Google Scholar 

  26. Wang RM, Zhang QG, Li J, Yang LC, Yang F, Brann DW (2009) The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats. Brain Res 1255:32–41

    Article  PubMed  CAS  Google Scholar 

  27. Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J (2004) p53: twenty five years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307

    Article  PubMed  CAS  Google Scholar 

  28. Kim MS, Lee SM, Kim WD, Ki SH, Moon A, Lee CH, Kim SG (2007) G alpha 12/13 basally regulates p53 through Mdm4 expression. Mol Cancer Res 5:473–484

    Article  PubMed  CAS  Google Scholar 

  29. Marine JC, Jochemsen AG (2005) Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331:750–760

    Article  PubMed  CAS  Google Scholar 

  30. Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    PubMed  CAS  Google Scholar 

  31. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC (2007) p53 activation by knockdown technologies. PLoS Genet 3:e78

    Article  PubMed  Google Scholar 

  32. Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93

    Article  PubMed  CAS  Google Scholar 

  33. Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 3rd edn. M. Westerfield, Eugene, OR

    Google Scholar 

  34. Hyatt TM, Ekker SC (1999) Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol 59:117–126

    Article  PubMed  CAS  Google Scholar 

  35. Sumanas S, Gomez G, Zhao Y, Park C, Choi K, Lin S (2008) Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation. Blood 111:4500–4510

    Article  PubMed  CAS  Google Scholar 

  36. Link V, Shevchenko A, Heisenberg CP (2006) Proteomics of early zebrafish embryos. BMC Dev Biol 6:1

    Article  PubMed  Google Scholar 

  37. Serbedzija GN, Flynn E, Willett CE (1999) Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3:353–359

    Article  PubMed  CAS  Google Scholar 

  38. Jowett T, Lettice L (1994) Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet 10:73–74

    Article  PubMed  CAS  Google Scholar 

  39. Mo S, Song P, Lv D, Chen Y, Zhou W, Gong W, Zhu Z (2005) Zebrafish z-otu, a novel Otu and Tudor domain-containing gene, is expressed in early stages of oogenesis and embryogenesis. Biochim Biophys Acta 1732:1–7

    PubMed  CAS  Google Scholar 

  40. Yamauchi H, Hotta Y, Konishi M, Miyake A, Kawahara A, Itoh N (2006) Fgf21 is essential for haematopoiesis in zebrafish. EMBO Rep 7:649–654

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nobuyuki Itoh at Kyoto University Graduate School of Pharmaceutical Sciences for plasmids of flk, gata1, pu.1, Dr. Shanye Gu at the Institute of Neuroscience, Chinese Academy of Sciences, for plasmids transferring, and Dr. Wei Zhang for imaging assistance. We also thank Dr. Margaret Ragni at Department of Medicine in University of Pittsburgh for critical reading of this manuscript and making significant improvement. The authors declare no conflict of interests. This study was supported by the Natural Sciences Foundation of China (No. 30510521 to P. Song and XY. Huang; No. 2004CB117401 to P. Song) and by ICGEB Research Grant (CRP/CHN02-01 to P. Song).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, D., Yang, Q., Li, Y. et al.13 is closely related to hematopoiesis in zebrafish. Mol Biol Rep 38, 2685–2694 (2011). https://doi.org/10.1007/s11033-010-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0411-9

Keywords

Navigation