Skip to main content
Log in

The complete mitochondrial genome of the cockroach Eupolyphaga sinensis (Blattaria: Polyphagidae) and the phylogenetic relationships within the Dictyoptera

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We present the complete mitochondrial DNA sequence of Eupolyphaga sinensis. This closed circular molecule is 15553 bp long and consists of 37 genes that encode for 13 inner membrane proteins, 2 ribosomal RNAs and 22 transfer RNAs. The genome shares the gene order and orientation with previously known Blattaria mitochondrial genomes. All tRNAs could be folded into the typical cloverleaf secondary structure, but the tRNASer (AGN) appears to be missing the DHU arm. The A + T-rich region is 857 bp long and longer than other cockroaches. Based on the concatenated amino acid sequences of all protein coding genes of E. sinensis in conjunction with those 23 other arthropod sequences, we reconstruct the phylogenetic tree. Phylogenetic analyses shows that Blataria (including Isoptera) and the Mantodea are sister groups. Furthermore the relationship of the three basal clades of winged insects are different from the three previous hypotheses ((Ephemeroptera + Odonata) +Neoptera, Ephemeroptera + (Odonata + Neoptera), Odonata + (Ephemeroptera +Neoptera)). The Ephemeroptera (Parafronurus youi) clusters with the Plecoptera (Pteronarcys princes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carapelli A, Comandi S, Convey P, Nardi F, Frati F (2008) The complete mitochondrial genome of the Antarctic springtail Cryptopygus antarcticus (Hexapoda: Collembola). BMC Genomics 9:315. doi:10.1186/1471-2164-9-315

    Article  PubMed  Google Scholar 

  2. Wolstenholme DR, Clary DO (1985) Sequence evolution of Drosophila mitochondrial NA. Genetics 109:725–744

    CAS  PubMed  Google Scholar 

  3. Resh VH, Cardé RG (2003) Insecta, overview. In: Resh VH, Cardé RG (eds) Encyclopedia of insects. Academic Press, Burlington MA, USA; 564–566. 1266 pp

  4. Yamauchi MM, Miyaf MU, Nishida M (2004) Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Mol Biol 13(4):435–442

    Article  CAS  PubMed  Google Scholar 

  5. Zhou CF, Wang XH, Lai M, Wang ML (1994) Effects of ground beetle on blood rheology of rats. Chin Tradit Herb Drug 25(1):28–29

    Google Scholar 

  6. He WH, Cheng XH, Xu AL (2004) An experimental study on the anticoagulant effect of extract from Eupolyphage sinesis Walker on Rabbits. J TCM Univ Hunan 23(2):7–9

    CAS  Google Scholar 

  7. Henning W (1969) Die Stammesgeschichte der Insekten. Frankfurt am Main: Waldemar Krammer. [English edition with supplementary notes 1981:W. Hennig: Insect Phylogeny]. J. Wiley & Sons, New York

  8. Kristensen NP (1998) The groundplan and basal diversification of the hexapods. In: Fortey RA, Thomas RH (eds) Arthropod relationships, systematic association, vol 55. Chapman and Hall, London, pp 281–293

    Google Scholar 

  9. Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. Wiley, New York, p 320

    Google Scholar 

  10. Thorne BL, Carpenter JM (1992) Phylogeny of the Dictyoptera. Syst Ent 17:253–268

    Article  Google Scholar 

  11. Kukalova-Peck J, Peck SB (1993) Zoraptera wing structures: evidence for new genera and relationship with the blattoid orders (Insecta:Blattoneoptera). Syst Ent 18:333–350

    Article  Google Scholar 

  12. Zhang JY, Zhou CF, Gai YH, Song DX, Zhou KY (2008) The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera. Gene 424:18–24

    Article  CAS  PubMed  Google Scholar 

  13. Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of the extant hexapod orders. Cladistics 17:113–169

    Article  Google Scholar 

  14. Hovmöller R, Pape T, Källersjö M (2002) The Palaeoptera problem: basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics 18:313–323

    Google Scholar 

  15. Ogden TH, Whiting MF (2003) The problem with “the Paleoptera problem” sense and sensitivity. Cladistics 19:432–442

    Google Scholar 

  16. Kjer KM (2004) Aligned 18S and insect phylogeny. Syst Biol 53:506–514

    Article  PubMed  Google Scholar 

  17. Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18SrRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 40:772–794

    Article  CAS  PubMed  Google Scholar 

  18. Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A (2007) Towards an 18S phylogeny of hexapods: accounting for group-specific character covariance in optimized mixed nucleotide/doublet models. Zoology 110:409–429

    Article  CAS  PubMed  Google Scholar 

  19. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Rook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  21. Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  22. Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 1998(392):667–668

    Article  Google Scholar 

  23. Cameron SL, Whiting MF (2007) Mitochondrial genomic comparisons of the subterranean termites from the Genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome 50(2):188–202

    Article  CAS  PubMed  Google Scholar 

  24. Crease TJ (1999) The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea). Gene 233:89–99

    Article  CAS  PubMed  Google Scholar 

  25. Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F (2003) Hexapod origins: monophyletic or paraphyletic? Science 299:1887–1889

    Article  CAS  PubMed  Google Scholar 

  26. Lee ES, Shin KS, Kim MS, Park H, Cho S, Kim CB (2006) The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai(Lepidoptera: Tortricidae). Gene 373:52–57

    Article  CAS  PubMed  Google Scholar 

  27. Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133:97–117

    CAS  PubMed  Google Scholar 

  28. Dotson EM, Beard CB (2001) Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 10(3):205–215

    Article  CAS  PubMed  Google Scholar 

  29. Caterino MS, Sperling FA (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol Phylogenet Evol 11:122–137

    Article  CAS  PubMed  Google Scholar 

  30. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  31. Nardi F, Carapelli A, Fanciulli PP, Dallai R, Frati F (2001) The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for Heteroplas my and tRNA Translocations. Mol Biol Evol 18(7):1293–1304

    CAS  PubMed  Google Scholar 

  32. Sharp PM, Tuohy TMF, Mosursk KR (1986) Codon usage in yeast: cluster analysis differentiates highly and lowly expressed genes. Nucleic Acids Res 14:5125–5143

    Article  CAS  PubMed  Google Scholar 

  33. Lessinger AC, Martins Junqueira AC, Lemos TA, Kemper EL, da Silva FR, Vettore AL, Arruda P, Azeredo-Espin AM (2000) The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae). Insect Mol Biol 9:521–529

    Article  CAS  PubMed  Google Scholar 

  34. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120

    Article  Google Scholar 

  35. Stewart JB, Beckenbach AT (2006) Insect mitochondrial genomics 2: the complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps, asymmetric directional mutation bias, and conserved plecopteran A + T-region elements. Genome 49(7):815–824

    Article  CAS  PubMed  Google Scholar 

  36. Carapelli A, Liò P, Nardi F, van der Wath E, Frati F (2007) Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evol Biol 7:S8. doi:10.1186/1471-2148-7-S2-S8

    Article  PubMed  Google Scholar 

  37. Cameron SL, Miller KB, D’Haese CA, Whiting MF, Barker SC (2004) Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics 20(6):534–557

    Article  Google Scholar 

  38. Podsiadlowski L (2006) The mitochondrial genome of the bristletail Petrobius brevistylis(Archaeognatha: Machilidae). Insect Mol Biol 15(3):253–258

    Article  CAS  PubMed  Google Scholar 

  39. Cameron SL, Barker SC, Whiting MF (2006) Mitochondrial genomics and the new insect order Mantophasmatodea. Mol Phylogenet Evol 38(1):274–279

    Article  CAS  PubMed  Google Scholar 

  40. Cook CE, Yue Q, Akam M (2005) Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc Biol Sci 272(1569):1295–1304

    Article  CAS  PubMed  Google Scholar 

  41. Comandi S, Carapelli A, Podsiadlowski L, Nardi F, Frati F (2009) The complete mitochondrial genome of Atelura formicaria (Hexapoda: Zygentoma) and the phylogenetic relationships of basal insects. Gene 439:25–34

    Article  CAS  PubMed  Google Scholar 

  42. Fenn JD, Song H, Cameron SL, Whiting MF (2008) A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Mol Phylogenet Evol 49(1):59–68

    Article  CAS  PubMed  Google Scholar 

  43. Podsiadlowski L, Carapelli A, Nardi F, Dallai R, Koch M, Boore JL, Frati F (2006) The mitochondrial genomes of Campodea fragilis and Campodea lubbocki (Hexapoda: Diplura): High genetic divergence in a morphologically uniform taxon. Gene 381:49–61

    Article  CAS  PubMed  Google Scholar 

  44. Carapelli A, Nardi F, Dallai R, Boore JL, Lio P, Frati F (2005) Relationships between hexapods and crustaceans based on four mitochondrial genes. Crustac Issues 16:295–306

    Google Scholar 

  45. Wilson K, Neville V, Ballment E, Benzie J (2000) The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods? Mol Biol Evol 17(6):863–874

    CAS  PubMed  Google Scholar 

  46. Hickerson MJ, Cunningham CW (2000) Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, anomura). Mol Biol Evol 17(4):639–644

    CAS  PubMed  Google Scholar 

  47. DeSalle R, Gatesy J, Wheeler W, Grimaldi D (1992) DNA sequences from a fossil termite in oligo-miocene amber and their phylogenetic implications. Science 257:1933–1936

    Article  CAS  PubMed  Google Scholar 

  48. Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    Article  CAS  PubMed  Google Scholar 

  49. Yoshizawa K, Johnson KP (2005) Aligned 18S for Zoraptera (Insecta): Phylogenetic position and molecular evolution. Mol Biol Evol 37:572–580

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Gang Liu and Dian-feng Liu for their helps in data analysis. We are grateful to Bo Xiao for the valuable complete mitochondrial genome data of B. germanica. This work was supported by a grant from the National Natural Sciences Foundation of China (No:30670257, 30670242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-fang Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yy., Xuan, Wj., Zhao, Jl. et al. The complete mitochondrial genome of the cockroach Eupolyphaga sinensis (Blattaria: Polyphagidae) and the phylogenetic relationships within the Dictyoptera. Mol Biol Rep 37, 3509–3516 (2010). https://doi.org/10.1007/s11033-009-9944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9944-1

Keywords

Navigation