Skip to main content
Log in

Four loci differentially expressed in muscle tissue depending on water-holding capacity are associated with meat quality in commercial pig herds

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Four genes, VTN, KERA, LYZ, and a non-annotated EST (Affymetrix probe set ID: Ssc.25503.1.S1_at), whose candidacy for traits related to water-holding capacity of meat arises from their trait-dependent differential expression, were selected for candidate gene analysis. Based on in silico analysis SNPs were detected, confirmed by sequencing and used to genotype animals of 4 pig populations including 3 commercial herds of Pietrain (PI), Pietrain × (German Large White × German Landrace) (PIF1), German Landrace (DL) and 1 experimental F2 population Duroc × Pietrain (DUPI). Comparative and genetic mapping established the location of VTN on SSC12, of LYZ and KERA on SSC5 and of UN on SSC7, coinciding with QTL regions for meat quality traits. VTN showed association with pH1, pH24 and drip loss. LYZ revealed association with conductivity 24, pH1 and drip loss. KERA was associated with pH. UN showed association with pH24 and drip loss, respectively. However, none of the candidate genes showed significant associations for a particular trait across all populations. This may be due to breed specific effects that are related to the differences in meat quality of theses pig breeds. The studies revealed statistic evidence for a link of genetic variation at these loci or close to them and promoted those four candidate genes as functional and/or positional candidate genes for meat quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rothschild MF, Soller M (1997) Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13–20

    Google Scholar 

  2. Wimmers K, Murani E, Te Pas MFW, Chang KC, Davoli R, Merks JWM, Henne H, Muraniova M, da Costa N, Harlizius B, Schellander K, Böll I, Braglia S, de Wit AAC, Cagnazzo M, Fontanesi L, Prins D, Ponsuksili S (2007) Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim Genet 38:474–484

    Article  CAS  PubMed  Google Scholar 

  3. Ponsuksili S, Murani E, Phatsara C, Jonas E, Walz C, Schwerin M, Schellander M, Wimmers K (2008) Expression profiling of muscle reveals transcripts differentially expressed in muscle that affect water-holding capacity of pork. J Agric Food Chem 56:10311–10317

    Article  CAS  PubMed  Google Scholar 

  4. Velleman SG (2000) The role of the extracellular matrix in skeletal development. Poult Sci 79:985–989

    CAS  PubMed  Google Scholar 

  5. Muráni E, Murániová M, Ponsuksili S, Schellander S, Wimmers K (2007) Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC Dev Biol 7:109

    Article  PubMed  Google Scholar 

  6. Luo X, Li H, Yang G (2008) Sequential expression of Wnt/β-catenin signal pathway related genes and adipocyte transcription factors during porcine adipose tissue development. Chin J Biotechnol 24:746–753

    Article  CAS  Google Scholar 

  7. Harmegnies N, Davin F, De Smet S, Buys N, Georges M, Coppieters W (2006) Results of a whole-genome quantitative trait locus scan for growth, carcass composition and meat quality in a porcine four-way cross. Anim Genet 37:543–553

    Article  CAS  PubMed  Google Scholar 

  8. Thomsen H, Lee HK, Rothschild MF, Malek M, Dekkers JCM (2004) Characterisation of quantitative trait loci for growth and meat quality in a cross between commercial reeds of swine. J Anim Sci 82:2213–2228

    CAS  PubMed  Google Scholar 

  9. Yue G, Schröffel JRJ, Moser G, Bartenschlager H, Reiner G, Geldermann H (2003) Linkage and QTL mapping for sus scrofa chromosome 12. J Anim Breed Genet 120:95–102

    Article  CAS  Google Scholar 

  10. Su YH, Xiong YZ, Jiang SW, Zhang Q, Lei MG, Zheng R, Deng CY (2004) Mapping quantitative trait loci for meat quality trait in a Large White × Meishan cross. Yi Chuan Xue Bao 31:132–136

    PubMed  Google Scholar 

  11. Ponsuksili S, Chomdej S, Murani E, Bläser U, Schreinemachers H-J, Schellander K, Wimmers K (2005) SNP detection and genetic mapping of porcine genes encoding enzymes in hepatic metabolic pathways and evaluation of linkage with carcass traits. Anim Genet 36:477–483

    CAS  PubMed  Google Scholar 

  12. ZDS, Zentral Verband der Deutschen Schweineprodukion e.V. (2004) Richtlinie fuer die Stationsprurefung auf Mastleistung, Schlachtkoerperwert und Fleischbeschaffenheit beim Schwein. Ausschuss fuer Leistungsprüfung und Zuchtwertschaetzung, Bonn, Germany

  13. Honikel KO (1986) Waterbinding capacity of meat (Wasserbindungsvermögen von Fleisch). Mitteilungsblatt der BAFF 6:7150–7154

    Google Scholar 

  14. Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP, Version 2.4. http://www.animalgenome.org/bioinfo/resources/manuals/Embnetut/Crimap/manuatoc.html [last accessed March 2009]

  15. Liu G, Jennen DG, Tholen E, Juengst H, Kleinwachter T, Holker M, Tesfaye D, Un G, Schreinemachers HJ, Murani E, Ponsuksili S, Kim JJ, Schellander K, Wimmers K (2007) A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim Genet 38:241–252

    Article  CAS  PubMed  Google Scholar 

  16. Kricker JA, Towne CL, Firth SM, Herington AC, Upton Z (2003) Structural and functional evidence for the interaction of insulin-like growth factors (IGFs) and IGF binding proteins with vitronectin. Endocrinology 144:2807–2815

    Article  CAS  PubMed  Google Scholar 

  17. Lynn GW, Heller WT, Mayasundari A, Minor KH, Peterson CB (2005) A model for the three-dimensional structure of human plasma vitronectin from small-angle scattering measurements. Biochemistry 44:565–574

    Article  CAS  PubMed  Google Scholar 

  18. Kjaergaard M, Gårdsvoll H, Hirschberg D, Nielbo S, Mayasundari A, Peterson CB, Jansson A, Jørgensen TJD, Poulsen FM, Ploug M (2007) Solution structure of recombinant somatomedin B domain from vitronectin produced in Pichia pastoris. Protein Sci 16:1934–1945

    Article  CAS  PubMed  Google Scholar 

  19. Schar CR, Blouse GE, Minor KH, Peterson CB (2008) A deletion mutant of vitronectin lacking the somatomedin B domain exhibits residual plasminogen activator inhibitor-1-binding activity. J Biol Chem 283:10297–10309

    Article  CAS  PubMed  Google Scholar 

  20. Blasi F (1997) uPA, uPAR, PAI-1: key intersection of proteolytic, adhesive and chemotactic highways? Immunol Today 18:415–417

    Article  CAS  PubMed  Google Scholar 

  21. Chapman HA, Wei Y (2001) Protease crosstalk with integrins: the urokinase receptor paradigm. Thromb Haemost 86:124–129

    CAS  PubMed  Google Scholar 

  22. Milan D, Bidanel JP, Iannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C (2002) Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol 34:705–728

    Article  CAS  PubMed  Google Scholar 

  23. Wimmers K, Fiedler I, Hardge T, Murani E, Schellander K, Ponsuksili S (2006) QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genet 7:15

    Article  PubMed  Google Scholar 

  24. Edwards DB, Ernst CW, Raney NE, Doumit ME, Hoge MD, Bates RO (2008) Quantitative trait locus mapping in an F2 Duroc × Pietrain resource population: II. carcass and meat quality traits. J Anim Sci 86:254–266

    Article  CAS  PubMed  Google Scholar 

  25. Chaudhary R, Wintero AK, Fredholm M, Chowdhary BP (1997) FISH mapping of seven cDNA sequences in the pig. Chromosome Res 5:545–549

    Article  CAS  PubMed  Google Scholar 

  26. Lee SS, Chen Y, Moran C, Stratil A, Reinder G, Bartenschlager H, Moser G, Geldermann H (2003) Linkage and QTL mapping for Sus scrofa chromosome 5. J Anim Breed Genet 120:38–44

    Article  CAS  Google Scholar 

  27. van Wijk HJ, Dibbits B, Baron EE, Brings AD, Harlizius B, Groenen MAM, Knol EF, Bovenhuis H (2006) Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. J Anim Sci 84:789–799

    PubMed  Google Scholar 

  28. Ibrahim HR, Thomas U, Pellegrini A (2001) A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 276:43767–43774

    Article  CAS  PubMed  Google Scholar 

  29. Gorbenko GP, Ioffe VM, Kinnunen PKJ (2007) Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association. Biophys J 93:140–153

    Article  CAS  PubMed  Google Scholar 

  30. Oasba PK, Kumar S (1997) Molecular divergence of lysozymes and alpha-lactalbumin. Crit Rev Biochem Mol Biol 32:255–306

    Article  Google Scholar 

  31. Permyakov EA, Berliner LJ (2000) Alpha-Lactalbumin: structure and function. FEBS Lett 473:269–274

    Article  CAS  PubMed  Google Scholar 

  32. Posse E, De Arcuri BF, Morero RD (1994) Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. Biochim Biophys Acta 1193:101–106

    Article  CAS  PubMed  Google Scholar 

  33. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  CAS  PubMed  Google Scholar 

  34. Melrose J, Fuller ES, Roughley PJ, Smith MM, Kerr B, Hughes CE, Caterson B, Little CB (2008) Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res Ther 10:R79

    Article  PubMed  Google Scholar 

  35. Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, Rothschild MF (2001) A molecular genome scan analysis to identify chromosomal regions influencingeconomic traits in the pig. II. Meat and muscle composition. Mamm Genome 12:637–645

    Article  CAS  PubMed  Google Scholar 

  36. Lee S, Norman JM, Gunasekaran S, van Laack RLJM, Kim BC, Kauffman RG (2000) Use of electrical conductivity to predict water-holding capacity in post-rigor pork. Meat Sci 55:385–389

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Deutschen Forschungsgemeinschaft under key project DFG-Forschergruppe ‘DRIP’ FOR 753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Wimmers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikanchai, T., Murani, E., Wimmers, K. et al. Four loci differentially expressed in muscle tissue depending on water-holding capacity are associated with meat quality in commercial pig herds. Mol Biol Rep 37, 595–601 (2010). https://doi.org/10.1007/s11033-009-9856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9856-0

Keywords

Navigation