Skip to main content

Advertisement

Log in

Effect of PARP-1 deficiency on DNA damage and repair in human bronchial epithelial cells exposed to Benzo(a)pyrene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Benzo[a]pyrene is a ubiquitously distributed environmental pollutant known to cause DNA damage, whereas PARP-1 is a nuclear enzyme that is activated by damaged DNA and plays an important role in base excision repair and genomic stability. Here, 16HBE and its PAPR1-deficient cells were exposed to BaP, and the DNA damage level and repair ability of both cell lines were measured by alkaline comet assay. The results showed that cell viability of both cell lines decreased in a dose-dependent manner when exposed to BaP, but there was no significant difference between two cell lines. Comet assay showed that BaP caused DNA damage in both cell lines at an obvious dose- and time-dependent manner. Compare with 16HBE, the PARP1-deficient cells were more sensitive to the damage caused by BaP. The results of DNA repair experiment showed that both cell lines can recover from the damage in a time-dependent pattern. The relative repair percentage of PARP1-deficient cells were generally lower than that of 16HBE at all exposed concentrations at the early stage of repair, but tended to be closer between two cell lines at the later period. According to results, we came to the conclusion that PARP1-deficient cells were more sensitive to BaP in contrast to normal 16HBE; DNA repair capacity in PARP1-deficient cells decreased significantly at the early stage of repair, but increased to the equivalent level of normal 16HBE in the later period. PARP-1 plays an important role in early repair of DNA damage caused by BaP in 16HBE notwithstanding the main repair work is taken by NER pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BaP:

Benzo(a)pyrene

PARP-1:

Poly(ADP-ribose)polymerase-1

HBE:

Human bronchial epithelial cell

BER:

Base excision repair

BPDE:

Anti-7,8,-dihydrodiol-9,10-epoxide benzo[a] pyrene

RRP:

Relative repair percentage

References

  1. IARC (1987) Overall evaluations of carcinogenicity. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, Suppl 7. International Agency for Research on Cancer, Lyon, p 440

    Google Scholar 

  2. Liu G, Niu Z, Van Niekerk D et al (2008) Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. Rev Environ Contam Toxicol 192:1–28. doi:10.1007/978-0-387-71724-1_1

    Article  CAS  PubMed  Google Scholar 

  3. Pfeifer GP, Denissenko MF, Olivier M et al (2002) Hainaut human tumor p53 mutations are selected for in mouse embryonic fibroblasts harboring a humanized p53 gene. Oncogene 21:7435–7451. doi:10.1038/sj.onc.1205803

    Article  CAS  PubMed  Google Scholar 

  4. Bostrom CE, Gerde P, Hanberg A et al (2002) Cancer risk assessment, indicators and guidelines for polycyclic aromatic hydrocarbons in ambient air. Environ Health Perspect 110:451–488

    CAS  PubMed  Google Scholar 

  5. Burczyniski ME, Penning TM (2000) Genotoxicity polycyclic aromatic ortho-quinones generated by aldo–keto reductase induce CYP1A1 via nuclear translocation of the aryl hydrocarbon receptor. Cancer Res 60:908–915

    Google Scholar 

  6. Lin T, Yang MS (2007) Cell death induced by benzo[a]pyrene in the HepG2 cells is dependent on PARP-1 activation and NAD depletion. Toxicology 245:147–153. doi:10.1016/j.tox.2007.12.020

    Article  PubMed  Google Scholar 

  7. Pagano A, Métrailler-Ruchonnet I, Aurrand-Lions M et al (2007) Poly(ADP-ribose) polymerase-1 (PARP-1) controls lung cell proliferation and repair after hyperoxia-induced lung damage. Am J Physiol Lung Cell Mol Physiol 293:619–629. doi:10.1152/ajplung.00037.2007

    Article  Google Scholar 

  8. Ahuilar-Quesada R, Muñoz-Gámez JA, Martín-Oliva D et al (2007) Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem 14:1179–1187. doi:10.2174/092986707780597998

    Article  Google Scholar 

  9. Rose JL, Reeves KC, Likhotvorik RI et al (2007) Base excision repair proteins are required for integrin-mediated suppression of bleomycin-induced DNA breakage in murine lung endothelial cells. J Pharmacol Exp Ther 321:318–326. doi:10.1124/jpet.106.113498

    Article  CAS  PubMed  Google Scholar 

  10. Bürkle A, Brabeck C, Diefenbach J et al (2005) The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol 37:1043–1053. doi:10.1016/j.biocel.2004.10.006

    Article  PubMed  Google Scholar 

  11. Hannon GJ (2002) RNA interference. Nature 418:244–251. doi:10.1038/418244a

    Article  CAS  PubMed  Google Scholar 

  12. Lee T, Dohjima G, Bauer H et al (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505

    CAS  PubMed  Google Scholar 

  13. Küpper JH, Müller M, Jacobson MK et al (1995) Trans-dominant inhibition of poly(ADP-ribosyl)ation sensitizes cells against gamma-irradiation and N-methyl-N′-nitro-N-nitrosoguanidine but does not limit DNA replication of a polyomavirus replicon. Mol Cell Biol 15:3154–3163

    PubMed  Google Scholar 

  14. Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221. doi:10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  15. Singh NP, Stephens RE (1997) Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res 383:167–175

    CAS  PubMed  Google Scholar 

  16. Shall S (1984) Inhibition of DNA repair by inhibitors of nuclear ADP-ribosyl transferase. Nucleic Acids Symp Ser 13:143–191

    CAS  PubMed  Google Scholar 

  17. Chatterjee S, Petzold SJ, Berger SJ et al (1987) Strategy for selection of cell variants deficient in poly(ADP-ribose) polymerase. Exp Cell Res 172:245–257. doi:10.1016/0014-4827(87)90384-3

    Article  CAS  PubMed  Google Scholar 

  18. Küpper JH, de Murcia G, Bürkle A (1990) Inhibition of poly(ADP-ribosyl)ation by overexpressing the poly(ADP-ribose) polymerase DNA-binding domain in mammalian cells. J Biol Chem 265:18721–18724

    PubMed  Google Scholar 

  19. Ding R, Pommier Y, Kang VH et al (1992) Depletion of poly(ADP-ribose) polymerase by antisense RNA expression results in a delay in DNA strand break rejoining. J Biol Chem 267:12804–12812

    CAS  PubMed  Google Scholar 

  20. Yang J, Liu XY, Niu PY et al (2007) Dynamic changes of XPA, XPC, XPF, XPG and ERCC1 protein expression and their correlations with levels of DNA damage in human bronchial epithelia cells exposed to benzo[a]pyrene. Toxicol Lett 174:10–17. doi:10.1016/j.toxlet.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  21. Gamper HB, Tung AS, Straub K et al (1977) DNA strand scission by benzo[a]pyrene diol epoxides. Science 4304:671–674. doi:10.1126/science.877583

    Article  Google Scholar 

  22. Lloyd DR, Hanawalt PC (2000) P53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells. Cancer Res 60:517–521

    CAS  PubMed  Google Scholar 

  23. Vock EH, Wolfe AR, Meehan T (2001) Trans- and cis-DNA adduct concentration in epidermis from mouse and rat skin treated ex vivo with benzo[a]pyrene diol epoxide and its corresponding chlorohydrin. Mutat Res 478:199–206. doi:10.1016/S0027-5107(01)00153-1

    CAS  PubMed  Google Scholar 

  24. Smith LE, Denissenko M, Bennett WP et al (2000) Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 92:803–810. doi:10.1093/jnci/92.10.803

    Article  CAS  PubMed  Google Scholar 

  25. Park JH, Troxel AB, Harvey RG et al (2006) PAH o-quinones produced by the aldo–keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines and 8-oxo-dGuo via reactive oxygen species. Chem Res Toxicol 19:719–728. doi:10.1021/tx0600245

    Article  CAS  PubMed  Google Scholar 

  26. Park JH, Mangal D, Tacka KA et al (2008) Evidence for the aldo–keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells. Proc Natl Acad Sci USA 105:6846–6851. doi:10.1073/pnas.0802776105

    Article  CAS  PubMed  Google Scholar 

  27. Braithwaite E, Wu XH, Wang ZG (1998) Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro. Carcinogenesis 19:1239–1246. doi:10.1093/carcin/19.7.1239

    Article  CAS  PubMed  Google Scholar 

  28. Ochi T, Ishiguro T, Ohsawa M (1986) Induction of alkaline-labile sites in DNA by benzo[a]pyrene and the repair of those lesions in cultured Chinese hamster cells. Mutat Res 165:31–38

    CAS  PubMed  Google Scholar 

  29. Peralta-Leal A, Rodríguez MI, Oliver FJ (2008) Poly(ADP-ribose)polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment. Clin Transl Oncol 10:318–323. doi:10.1007/s12094-008-0207-8

    Article  CAS  PubMed  Google Scholar 

  30. Bürkle A (2001) Poly(APD-ribosyl)ation, a DNA damage-driven protein modification and regulator of genomic instability. Cancer Lett 163:1–5. doi:10.1016/S0304-3835(00)00694-7

    Article  PubMed  Google Scholar 

  31. Trucco C, Oliver FJ, de Murcia G et al (1998) DNA repair defect in poly(ADP-ribose) polymerase deficient cell lines. Nucleic Acids Res 26:2644–2649. doi:10.1093/nar/26.11.2644

    Article  CAS  PubMed  Google Scholar 

  32. Vodenicharov MD, Sallmann FR, Satoh MS et al (2000) Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res 20:3887–3896. doi:10.1093/nar/28.20.3887

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (30571592, 30700673, 30571588, 30630055), National Key Basic Research and Development Program (2002CB512903), NSF of Guangdong (4002730) and a Key Program of High Technology Research and Development Program of Shenzhen (JH200505300503A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-xiong Zhuang.

Additional information

Gong-hua Tao and Lin-qing Yang have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Gh., Yang, Lq., Gong, Cm. et al. Effect of PARP-1 deficiency on DNA damage and repair in human bronchial epithelial cells exposed to Benzo(a)pyrene. Mol Biol Rep 36, 2413–2422 (2009). https://doi.org/10.1007/s11033-009-9472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9472-z

Keywords

Navigation