Skip to main content

Advertisement

Log in

Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. The history of RNA interference (RNAi) has only a dozen years, however, further studies have revealed that it is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi is a natural process by which small interfering RNA (siRNA) duplex directs sequence specific post-transcriptional silencing of homologous genes by binding to its complementary mRNA and triggering its elimination. RNAi has been extensively used as a novel and effective gene silencing tool for the fundamental research of cancer therapeutics, and has displayed great potential in clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lai SR, Andrews LG, Tollefsbol TO (2007) RNA interference using a plasmid construct expressing short-hairpin RNA. Methods Mol Biol 405:31–37. doi:10.1007/978-1-60327-070-0_4

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498. doi:10.1038/35078107

    Article  CAS  PubMed  Google Scholar 

  3. Ma Y, Chan CY, He ML (2007) RNA interference and antiviral therapy. World J Gastroenterol 13(39):5169–5179

    CAS  PubMed  Google Scholar 

  4. Gao X, Zhang P (2007) Transgenic RNA interference in mice. Physiology (Bethesda) 22:161–166. doi:10.1152/physiol.00002.2007

    CAS  Google Scholar 

  5. Carpenter JE, Hutchinson JA, Jackson W, Grose C (2008) Egress of light particles among filopodia on the surface of Varicella-Zoster virus-infected cells. J Virol 82(6):2821–2835. doi:10.1128/JVI.01821-07

    Article  CAS  PubMed  Google Scholar 

  6. Huang X, Wang JY, Lu X (2008) Systems analysis of quantitative shRNA-library screens identifies regulators of cell adhesion. BMC Syst Biol 2:49. doi:10.1186/1752-0509-2-49

    Article  PubMed  CAS  Google Scholar 

  7. Wu CY, Wu MS, Chiang EP, Wu CC, Chen YJ, Chen CJ, Chi NH, Chen GH, Lin JT (2007) Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut 56(6):782–789. doi:10.1136/gut.2006.109868

    Article  CAS  PubMed  Google Scholar 

  8. Gong M, Lu Z, Fang G, Bi J, Xue X (2008) A small interfering RNA targeting osteopontin as gastric cancer therapeutics. Cancer Lett 272:148–159. doi:10.1016/j.canlet.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  9. Nakabayashi H, Hashimoto T, Miyao Y, Tjong KK, Chan J, Tamaoki T (1991) A position-dependent silencer plays a major role in repressing alpha-fetoprotein expression in human hepatoma. Mol Cell Biol 11(12):5885–5893

    CAS  PubMed  Google Scholar 

  10. Yang X, Zhang Y, Zhang L, Zhang L, Mao J (2008) Silencing alpha-fetoprotein expression induces growth arrest and apoptosis in human hepatocellular cancer cell. Cancer Lett 271(2):281–293. doi:10.1016/j.canlet.2008.06.017

    Article  CAS  PubMed  Google Scholar 

  11. Hunter AM, LaCasse EC, Korneluk RG (2007) The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12(9):1543–1568. doi:10.1007/s10495-007-0087-3

    Article  CAS  PubMed  Google Scholar 

  12. Danson S, Dean E, Dive C, Ranson M (2007) IAPs as a target for anticancer therapy. Curr Cancer Drug Targets 7(8):785–794. doi:10.2174/156800907783220471

    Article  CAS  PubMed  Google Scholar 

  13. Dean EJ, Ranson M, Blackhall F, Dive C (2007) X-linked inhibitor of apoptosis protein as a therapeutic target. Expert Opin Ther Targets 11(11):1459–1471. doi:10.1517/14728222.11.11.1459

    Article  CAS  PubMed  Google Scholar 

  14. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994. doi:10.1038/sj.embor.7400795

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, Durkin JP, Mayer LD, LaCasse EC (2003) Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res 9(7):2826–2836

    CAS  PubMed  Google Scholar 

  16. McManus DC, Lefebvre CA, Cherton-Horvat G, St-Jean M, Kandimalla ER, Agrawal S, Morris SJ, Durkin JP, Lacasse EC (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23(49):8105–8117. doi:10.1038/sj.onc.1207967

    Article  CAS  PubMed  Google Scholar 

  17. Yang XF, Wu CJ, McLaughlin S, Chillemi A, Wang KS, Canning C, Alyea EP, Kantoff P, Soiffer RJ, Dranoff G, Ritz J (2001) CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci USA 98(13):7492–7497. doi:10.1073/pnas.131590998

    Article  CAS  PubMed  Google Scholar 

  18. Yan Y, Phan L, Yang F, Talpaz M, Yang Y, Xiong Z, Ng B, Timchenko NA, Wu CJ, Ritz J, Wang H, Yang XF (2004) A novel mechanism of alternative promoter and splicing regulates the epitope generation of tumor antigen CML66-L. J Immunol 172(1):651–660

    CAS  PubMed  Google Scholar 

  19. Wang Q, Li M, Wang Y, Zhang Y, Jin S, Xie G, Liu Z, Wang S, Zhang H, Shen L, Ge H (2008) RNA interference targeting CML66, a novel tumor antigen, inhibits proliferation, invasion and metastasis of HeLa cells. Cancer Lett 269(1):127–138. doi:10.1016/j.canlet.2008.04.035

    Article  CAS  PubMed  Google Scholar 

  20. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1(4):193–199. doi:10.1038/12013

    Article  CAS  PubMed  Google Scholar 

  21. Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I, Hershko DD (2005) The prognostic impact of the ubiquitin ligase subunits skp2 and Cks1 in colorectal carcinoma. Cancer 103(7):1336–1346. doi:10.1002/cncr.20917

    Article  CAS  PubMed  Google Scholar 

  22. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M, Monti F, Loda M, Pagano M (2002) Oncogenic role of the ubiquitin ligase subunit skp2 in human breast cancer. J Clin Invest 110(5):633–641

    CAS  PubMed  Google Scholar 

  23. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr (2004) Degradation of the SCF component skp2 in cellcycle phase G1 by the anaphase-promoting complex. Nature 428(6979):194–198. doi:10.1038/nature02381

    Article  CAS  PubMed  Google Scholar 

  24. Chiarle R, Fan Y, Piva R, Boggino H, Skolnik J, Novero D, Palestro G, De Wolf-Peeters C, Chilosi M, Pagano M, Inghirami G (2002) S-phase kinase-associated protein 2 expression in non-Hodgkin’s lymphoma inversely correlates with p27 expression and defines cells in S phase. Am J Pathol 160(4):1457–1466

    CAS  PubMed  Google Scholar 

  25. Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM, Hershko A (2001) Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer 91(9):1745–1751. doi:10.1002/1097-0142(20010501)91:9<1745::AID-CNCR1193>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Murphy M, Ross J, Sheehan C, Carlson JA (2004) skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J Cutan Pathol 31(10):633–642. doi:10.1111/j.0303-6987.2004.00243.x

    Article  PubMed  Google Scholar 

  27. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, Nakayama K, Mori M (2000) Clinical and biological significance of S-phase kinase-associated protein 2 (skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62(13):3819–3825

    Google Scholar 

  28. Jiang F, Caraway NP, Li R, Katz RL (2005) RNA silencing of S-phase kinase-interacting protein 2 inhibits proliferation and centrosome amplification in lung cancer cells. Oncogene 24(21):3409–3418. doi:10.1038/sj.onc.1208459

    Article  CAS  PubMed  Google Scholar 

  29. Katagiri Y, Hozumi Y, Kondo S (2006) Knockdown of skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J Dermatol Sci 42(3):215–224. doi:10.1016/j.jdermsci.2005.12.016

    Article  CAS  PubMed  Google Scholar 

  30. Kudo Y, Takata T, Yasui W, Ogawa I, Miyauchi M, Takekoshi T, Tahara E, Nikai H (1998) Reduced expression of cyclindependent kinase inhibitor p27 is an indicator of malignant behavior of oral squamous cell carcinomas. Cancer 83(12):2447–2455. doi:10.1002/(SICI)1097-0142(19981215)83:12<2447::AID-CNCR7>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  31. Kudo Y, Kitajima S, Sato S, Ogawa I, Miyauchi M, Takata T (2002) Transfection of p27 Kip1 threonine residue 187 mutant type gene, which is not influenced by ubiquitin-mediated degradation, induces cell cycle arrest in oral squamous cell carcinoma cells. Oncology 63(4):398–404. doi:10.1159/000066222

    Article  CAS  PubMed  Google Scholar 

  32. Fang L, Hu Q, Hua Z, Li S, Dong W (2008) Growth inhibition of a tongue squamous cell carcinoma cell line (Tca8113) in vitro and in vivo via siRNA-mediated down-regulation of skp2. Int J Oral Maxillofac Surg 37(9):847–852. doi:10.1016/j.ijom.2008.05.017

    Article  PubMed  Google Scholar 

  33. Toh Y, Oki E, Oda S, Tokunaga E, Ohno S, Maehara Y, Nicolson GL, Sujimachi K (1997) Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int J Cancer 74(4):459–463. doi:10.1002/(SICI)1097-0215(19970822)74:4<459::AID-IJC18>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  34. Kidd M, Modlin IM, Mane SM, Camp RL, Eick G, Latich I (2006) The role of gene markers-NAP1L1, MAGE-D2, and MTA1- in definiting small-intestinal carcinoid neoplasia. Ann Surg Oncol 13(2):253–262. doi:10.1245/ASO.2006.12.011

    Article  PubMed  Google Scholar 

  35. Paterno GD, Li Y, Luchman HA, Ryan PJ, Gillespie LL (1997) cDNA cloning of a novel, developmentally regulated immediate early gene activated by fibroblast growth factor and encoding a nuclear protein. J Biol Chem 272(41):25591–25595. doi:10.1074/jbc.272.41.25591

    Article  CAS  PubMed  Google Scholar 

  36. Toh Y, Pencil SD, Nicolson GL (1994) A novel candidate metastasis-associated gene, Mta1, differently expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J Biol Chem 269(37):22958–22963

    CAS  PubMed  Google Scholar 

  37. Hofer MD, Kuefer R, Varambally S, Li H, Ma J, Shapiro GI, Gschwend JE, Hautmann RE, Sanda MG, Giehl K, Menke A, Chinnaiyan AM, Rubin MA (2004) The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Res 64(3):825–829. doi:10.1158/0008-5472.CAN-03-2755

    Article  CAS  PubMed  Google Scholar 

  38. Iguchi H, Imura G, Toh Y, Ogata Y (2000) Expression of MTA1, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. Int J Oncol 16(6):1211–1214

    CAS  PubMed  Google Scholar 

  39. Martin MD, Hilsenbeck SG, Mohsin SK, Hopp TA, Clark GM, Osborne CK, Allred DC, O’Connell P (2006) Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. Breast Cancer Res Treat 95(1):7–12. doi:10.1007/s10549-005-9016-8

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki H, Yukiue H, Kobayashi Y, Nakashima Y, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y (2001) Expression of the MTA1 mRNA in thymoma patients. Cancer Lett 174(2):159–163. doi:10.1016/S0304-3835(01)00704-2

    Article  CAS  PubMed  Google Scholar 

  41. Sasaki H, Moriyama S, Nakashima Y, Kobayashi Y, Yukiue H, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y (2002) Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer 35(2):149–154. doi:10.1016/S0169-5002(01)00329-4

    Article  PubMed  Google Scholar 

  42. Toh Y, Kuwano H, Mori M, Nicolson GL, Sugimachi K (1999) Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. Br J Cancer 79(11–12):1723–1726. doi:10.1038/sj.bjc.6690274

    Article  CAS  PubMed  Google Scholar 

  43. Dube N, Tremblay ML (2005) Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases from diabetes obesity to cell cycle and cancer. Biochim Biophys Acta 1754(1–2):108–117

    CAS  PubMed  Google Scholar 

  44. Stoker AW (2005) Protein tyrosine phosphatases and signalling. J Endocrinol 185(1):19–33. doi:10.1677/joe.1.06069

    Article  CAS  PubMed  Google Scholar 

  45. Cohen LA, Guan JL (2005) Mechanisms of focal adhesion kinase regulation. Curr Cancer Drug Targets 5(8):629–643. doi:10.2174/156800905774932798

    Article  CAS  PubMed  Google Scholar 

  46. Mariotti M, Castiglioni S, Maier JA (2006) Expression analysis and modulation by HIV-Tat of the tyrosine phosphatase HD-PTP. J Cell Biochem 98(2):301–308. doi:10.1002/jcb.20770

    Article  CAS  PubMed  Google Scholar 

  47. Mariotti M, Castiglioni S, Garcia-Manteiga JM, Beguinot L, Maier JA (2008) HD-PTP inhibits endothelial migration through its interaction with Src. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2008.08.005

    PubMed  Google Scholar 

  48. Toyooka S, Ouchida M, Jitsumori Y, Tsukuda K, Sakai A, Nakamura A, Shimizu N, Shimizu K (2000) HD-PTP: a novel protein tyrosine phosphatase gene on human chromosome 3p21.3. Biochem Biophys Res Commun 278(3):671–678. doi:10.1006/bbrc.2000.3870

    Article  CAS  PubMed  Google Scholar 

  49. Li M, Zhang ZF, Reuter VE, Cordon-Cardo C (1996) Chromosome 3 allelic losses and microsatellite alterations in transitional cell carcinoma of the urinary bladder. Am J Pathol 149(1):229–235

    CAS  PubMed  Google Scholar 

  50. Bernués M, Casadevall C, Caballín MR, Miro R, Ejarque MJ, Chechile G, Gelabert A, Egozcue J (1999) Study of allelic losses on 3p, 6q, and 17p in human urothelial cancer. Cancer Genet Cytogenet 112(1):42–45. doi:10.1016/S0165-4608(98)00248-9

    Article  PubMed  Google Scholar 

  51. Mariotti M, Castiglioni S, Maier JA (2009) Inhibition of T24 human bladder carcinoma cell migration by RNA interference suppressing the expression of HD-PTP. Cancer Lett 273(1):155–163. doi:10.1016/j.canlet.2008.08.017

    Article  CAS  PubMed  Google Scholar 

  52. McSherry EA, Donatello S, Hopkins AM, McDonnell S (2007) Molecular basis of invasion in breast cancer. Cell Mol Life Sci 64(24):3201–3218. doi:10.1007/s00018-007-7388-0

    Article  CAS  PubMed  Google Scholar 

  53. Akiyoshi T, Uchida K, Tateyama S (2004) Expression of bone morphogenetic protein-6 (BMP-6) and BMP receptors in myoepithelial cells of canine mammary gland tumors. Vet Pathol 41(2):154–163. doi:10.1354/vp.41-2-154

    Article  CAS  PubMed  Google Scholar 

  54. Clement JH, Sanger J, Hoffken K (1999) Expression of bone morphogenetic protein 6 in normal mammary tissue and breast cancer cell lines and its regulation by epidermal growth factor. Int J Cancer 80(2):250–256. doi:10.1002/(SICI)1097-0215(19990118)80:2<250::AID-IJC14>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  55. Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET (2005) Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bonemetastases through a dual mechanism. Cancer Res 65(18):8274–8285. doi:10.1158/0008-5472.CAN-05-1891

    Article  CAS  PubMed  Google Scholar 

  56. Hatakeyama S, Gao YH, Nemoto YO, Kataoka H, Satoh M (1997) Expression of bone morphogenetic proteins of human neoplastic epithelial cells. Biochem Mol Biol Int 42(3):497–505

    CAS  PubMed  Google Scholar 

  57. Kawabata A, Okano K, Uchida K, Yamaguchi R, Hayashi T, Tateyama S (2005) Co-localization of chondromodulin-I (ChM-I) and bone morphogenetic protein-6 (BMP-6) in myoepithelial cells of canine mammary tumors. J Vet Med Sci 67(11):1097–1102. doi:10.1292/jvms.67.1097

    Article  CAS  PubMed  Google Scholar 

  58. Thomas BG, Hamdy FC (2000) Bone morphogenetic protein-6: potential mediator of osteoblastic metastases in prostate cancer. Prostate Cancer Prostatic Dis 3(4):283–285. doi:10.1038/sj.pcan.4500482

    Article  CAS  PubMed  Google Scholar 

  59. Yang S, Du J, Wang Z, Yuan W, Qiao Y, Zhang M, Zhang J, Gao S, Yin J, Sun B, Zhu T (2007) BMP-6 promotes E-cadherin expression through repressing deltaEF1 in breast cancer cells. BMC Cancer 7:211. doi:10.1186/1471-2407-7-211

    Article  PubMed  CAS  Google Scholar 

  60. Zhang M, Wang Q, Yuan W, Yang S, Wang X, Yan JD, Du J, Yin J, Gao SY, Sun BC, Zhu TH (2007) Epigenetic regulation of bone morphogenetic protein-6 gene expression in breast cancer cells. J Steroid Biochem Mol Biol 105(1–5):91–97. doi:10.1016/j.jsbmb.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  61. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385. doi:10.1038/sj.onc.1208429

    Article  CAS  PubMed  Google Scholar 

  62. Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J (2002) Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277(42):39209–39216. doi:10.1074/jbc.M206400200

    Article  CAS  PubMed  Google Scholar 

  63. Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E, Zeng C, Baron A, Bemis L, Erickson P, Wilder E, Rustgi A, Kitajewski J, Gabrielson E, Bremnes R, Franklin W (2003) WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA 100(18):10429–10434. doi:10.1073/pnas.1734137100

    Article  CAS  PubMed  Google Scholar 

  64. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988. doi:10.1038/sj.onc.1210508

    Article  CAS  PubMed  Google Scholar 

  65. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26(5):711–724. doi:10.1038/sj.onc.1209808

    Article  CAS  PubMed  Google Scholar 

  66. Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, Maemura K, Miyagishi M, Higashi Y, Kondoh H (2006) DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell 11(1):93–104. doi:10.1016/j.devcel.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  67. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104(9):3432–3437. doi:10.1073/pnas.0611192104

    Article  CAS  PubMed  Google Scholar 

  68. Yang S, Du J, Wang Z, Yan J, Yuan W, Zhang J, Zhu T (2008) Dual mechanism of δEF1 expression regulated by bone morphogenetic protein-6 in breast cancer. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2008.08.030

    Google Scholar 

  69. Wang R, Li B, Wang X, Lin F, Gao P, Cheng SY, Zhang HZ (2008) Inhibiting XIAP expression by RNAi to inhibit proliferation and enhance radiosensitivity in laryngeal cancer cell line. Auris Nasus Laryn. doi:10.1016/j.anl.2008.08.006

    Google Scholar 

  70. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48:353–374. doi:10.1146/annurev.med.48.1.353

    Article  CAS  PubMed  Google Scholar 

  71. Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ (2003) AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem 278(26):23432–23440. doi:10.1074/jbc.M302674200

    Article  CAS  PubMed  Google Scholar 

  72. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH (2007) Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67(5):1979–1987. doi:10.1158/0008-5472.CAN-06-1479

    Article  CAS  PubMed  Google Scholar 

  73. Xing H, Cao Y, Weng D, Tao W, Song X, Wang W, Meng L, Xu G, Zhou J, Wang S, Ma D (2008) Fibronectin-mediated activation of Akt2 protects human ovarian and breast cancer cells from docetaxelinduced apoptosis via inhibition of the p38 pathway. Apoptosis 13(2):213–223. doi:10.1007/s10495-007-0158-5

    Article  CAS  PubMed  Google Scholar 

  74. Weng D, Song X, Xing H, Ma X, Xia X, Weng Y, Zhou J, Xu G, Meng L, Zhu T, Wang S, Ma D (2009) Implication of the Akt2/survivin pathway as a critical target in paclitaxel treatment in human ovarian cancer cells. Cancer Lett 273(2):257–265. doi:10.1016/j.canlet.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  75. Chan AT, Leung SF, Ngan RK, Teo PM, Lau WH, Kwan WH, Hui EP, Yiu HY, Yeo W, Cheung FY, Yu KH, Chiu KW, Chan DT, Mok TS, Yau S, Yuen KT, Mo FK, Lai MM, Ma BB, Kam MK, Leung TW, Johnson PJ, Choi PH, Zee BC (2005) Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 97(7):536–539

    Article  CAS  PubMed  Google Scholar 

  76. Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, Wang WY (2003) Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol 21(4):631–637. doi:10.1200/JCO.2003.06.158

    Article  PubMed  Google Scholar 

  77. Wee J, Tan EH, Tai BC, Wong HB, Leong SS, Tan T, Chua ET, Yang E, Lee KM, Fong KW, Tan HS, Lee KS, Loong S, Sethi V, Chua EJ, Machin D (2005) Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage III and IV nasopharyngeal cancer of the endemic variety. J Clin Oncol 23(27):6730–6738. doi:10.1200/JCO.2005.16.790

    Article  CAS  PubMed  Google Scholar 

  78. Mader RM, Müller M, Steger GG (1998) Resistance to 5-fluorouracil. Gen Pharmacol 31(5):661–666. doi:10.1016/S0306-3623(98)00191-8

    CAS  PubMed  Google Scholar 

  79. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251. doi:10.1038/418244a

    Article  CAS  PubMed  Google Scholar 

  80. Liu L, Andrews LG, Tollefsbol TO (2006) Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death. Oncogene 25(31):4370–4375. doi:10.1038/sj.onc.1209454

    Article  CAS  PubMed  Google Scholar 

  81. Kang MK, Kim RH, Kim SJ, Yip FK, Shin KH, Dimri GP, Christensen R, Han T, Park NH (2007) Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br J Cancer 96(1):126–133. doi:10.1038/sj.bjc.6603529

    Article  CAS  PubMed  Google Scholar 

  82. Qin L, Zhang X, Zhang L, Feng Y, Weng GX, Li MZ, Kong QL, Qian CN, Zeng YX, Zeng MS, Liao DF, Song LB (2008) Downregulation of BMI-1 enhances 5-fluorouracil-induced apoptosis in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 371(3):531–535. doi:10.1016/j.bbrc.2008.04.117

    Article  CAS  PubMed  Google Scholar 

  83. Guo WJ, Zeng MS, Yadav A, Song LB, Guo BH, Band V, Dimri GP (2007) Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and downregulating Akt activity in breast cancer cells. Cancer Res 67(11):5083–5089. doi:10.1158/0008-5472.CAN-06-4368

    Article  CAS  PubMed  Google Scholar 

  84. Marques JT, Williams BR (2005) Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23(11):1399–1405. doi:10.1038/nbt1161

    Article  CAS  PubMed  Google Scholar 

  85. Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348(5):1079–1090. doi:10.1016/j.jmb.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  86. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22(3):326–330. doi:10.1038/nbt936

    Article  CAS  PubMed  Google Scholar 

  87. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226. doi:10.1038/nbt1051

    Article  CAS  PubMed  Google Scholar 

  88. Chiu YL, Rana TM (2002) RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 10(3):549–561. doi:10.1016/S1097-2765(02)00652-4

    Article  CAS  PubMed  Google Scholar 

  89. Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33(1):439–447. doi:10.1093/nar/gki193

    Article  CAS  PubMed  Google Scholar 

  90. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31(11):2705–2716. doi:10.1093/nar/gkg393

    Article  CAS  PubMed  Google Scholar 

  91. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B (2005) Fully 2’-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48(4):901–904. doi:10.1021/jm049167j

    Article  CAS  PubMed  Google Scholar 

  92. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12(7):1197–1205. doi:10.1261/rna.30706

    Article  CAS  PubMed  Google Scholar 

  93. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42(26):7967–7975. doi:10.1021/bi0343774

    Article  CAS  PubMed  Google Scholar 

  94. Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA (2004) RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 32(20):5991–6000. doi:10.1093/nar/gkh936

    Article  CAS  PubMed  Google Scholar 

  95. Parrish S, Fleenor J, Xu S, Mello C, Fire A (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell 6(5):1077–1087. doi:10.1016/S1097-2765(00)00106-4

    Article  CAS  PubMed  Google Scholar 

  96. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9(9):1034–1048. doi:10.1261/rna.5103703

    Article  CAS  PubMed  Google Scholar 

  97. Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C (2004) Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett 14(19):4975–4977. doi:10.1016/j.bmcl.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  98. Cheng K, Ye Z, Guntaka RV, Mahato RI (2006) Enhanced hepatic uptake and bioactivity of type alpha1(I) collagen gene promoterspecific triplex-forming oligonucleotides after conjugation with cholesterol. J Pharmacol Exp Ther 317(2):797–805. doi:10.1124/jpet.105.100347

    Article  CAS  PubMed  Google Scholar 

  99. Simeoni F, Morris MC, Heitz F, Divita G (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31:2717–2724. doi:10.1093/nar/gkg385

    Article  CAS  PubMed  Google Scholar 

  100. Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558(1–3):63–68. doi:10.1016/S0014-5793(03)01505-9

    Article  CAS  PubMed  Google Scholar 

  101. Ikeda R, Iwashita K, Sumizawa T, Beppu S, Tabata S, Tajitsu Y, Shimamoto Y, Yoshida K, Furukawa T, Che XF, Yamaguchi T, Ushiyama M, Miyawaki A, Takeda Y, Yamamoto M, Zhao HY, Shibayama Y, Yamada K, Akiyama S (2008) Hyperosmotic stress up-regulates the expression of major vault protein in SW620 human colon cancer cells. Exp Cell Res 314(16):3017–3026. doi:10.1016/j.yexcr.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  102. Christofakis EP, Miyazaki H, Rubink DS, Yeudall WA (2008) Roles of CXCL8 in squamous cell carcinoma proliferation and migration. Oral Oncol 44(10):920–926. doi:10.1016/j.oraloncology.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  103. Duan Z, Zhu G, Yang D, Zhang X, Gao Y (2008) Molecular mechanism of Skp2 in promoting cervical cancer HeLa cell proliferation. J Med Coll PLA 23(4):199–208. doi:10.1016/S1000-1948(08)60043-X

    Article  CAS  Google Scholar 

  104. Lund JR, Paoloni M, Kurzman I, Padilla M, Argyle DJ (2008) Inhibition of canine telomerase in vitro and in vivo using RNAi: further development of a natural canine model for telomerase-based cancer therapies. Vet J 177(2):192–197. doi:10.1016/j.tvjl.2007.09.015

    Article  CAS  PubMed  Google Scholar 

  105. Zhao W, Xu Y, Kong D, Liu R, Zhang Z, Jin C, Zhang Z, Xiu Y (2008) Tissue-selective RNA interference in prostate cancer cell using prostate specific membrane antigen promoter/enhancer. Orol Oncol. doi:10.1016/j.urolonc.2008.05.003

    Google Scholar 

  106. Jere D, Xu CX, Arote R, Yun CH, Cho MH, Cho CS (2008) Poly(β-amino ester) as a carrier for si/shRNA delivery in lung cancer cells. Biomaterials 29(16):2535–2547. doi:10.1016/j.biomaterials.2008.02.018

    Article  CAS  PubMed  Google Scholar 

  107. Dougherty CJ, Ichim TE, Liu L, Reznik G, Min WP, Ghochikyan A, Agadjanyan MG, Reznik BN (2008) Selective apoptosis of breast cancer cells by siRNA targeting of BORIS. Biochem Biophys Res Commun 370(1):109–112. doi:10.1016/j.bbrc.2008.03.040

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Z, Sun P, Liu J, Fu L, Yan J, Liu Y, Yu L, Wang X, Yan Q (2008) Suppression of FUT1/FUT4 expression by siRNA inhibits tumor growth. Biochim Biophys Acta 1783(2):287–296. doi:10.1016/j.bbamcr.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  109. Numnum TM, Makhija S, Lu B, Wang M, Rivera A, Stoff-Khalili M, Alvarez RD, Zhu ZB, Curiel DT (2008) Improved anti-tumor therapy based upon infectivity-enhanced adenoviral delivery of RNA interference in ovarian carcinoma cell lines. Gynecol Oncol 108(1):34–41

    Article  CAS  PubMed  Google Scholar 

  110. Kawasaki G, Yanamoto S, Yoshitomi I, Yamada S, Mizuno A (2008) Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. Int J Oral Maxillofac Surg 37(11):1039–1046. doi:10.1016/j.ijom.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  111. Zhang L, Chen W, Li X (2008) A novel anticancer effect of butein: inhibition of invasion through the ERK1/2 and NF-κB signaling pathways in bladder cancer cells. FEBS Lett 582(13):1821–1828. doi:10.1016/j.febslet.2008.04.046

    Article  CAS  PubMed  Google Scholar 

  112. Wang Y, Yu J, Zhan Q (2008) BRCA1 regulates caveolin-1 expression and inhibits cell invasiveness. Biochem Biophys Res Commun 370(2):201–206. doi:10.1016/j.bbrc.2008.03.031

    Article  CAS  PubMed  Google Scholar 

  113. Hara S, Nakashiro K, Goda H, Hamakawa H (2008) Role of Akt isoforms in HGF-induced invasive growth of human salivary gland cancer cells. Biochem Biophys Res Commun 370(1):123–128. doi:10.1016/j.bbrc.2008.03.042

    Article  CAS  PubMed  Google Scholar 

  114. Liang X, Yang X, Tang Y, Zhou H, Liu X, Xiao L, Gao J, Mao Z (2008) RNAi-mediated downregulation of urokinase plasminogen activator receptor inhibits proliferation, adhesion, migration and invasion in oral cancer cells. Oral Oncol 44(12):1172–1180. doi:10.1016/j.oraloncology.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  115. Li Q, Wu M, Wang H, Xu G, Zhu T, Zhang Y, Liu P, Song A, Gang C, Han Z, Zhou J, Meng L, Lu Y, Wang S, Ma D (2008) Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. Cancer Lett 261(1):55–63. doi:10.1016/j.canlet.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  116. Liu SC, Yang JJ, Shao KN, Chueh PJ (2008) RNA interference targeting tNOX attenuates cell migration via a mechanism that involves membrane association of Rac. Biochem Biophys Res Commun 365(4):672–677. doi:10.1016/j.bbrc.2007.11.025

    Article  CAS  PubMed  Google Scholar 

  117. Park SY, Lee W, Lee J, Kim IS (2008) Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase. Cancer Lett 261(2):205–214. doi:10.1016/j.canlet.2007.11.011

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Zhang, D., Cheng, F. et al. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep 36, 2153–2163 (2009). https://doi.org/10.1007/s11033-008-9429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9429-7

Keywords

Navigation