Skip to main content

Advertisement

Log in

Novel ultrasound-targeted microbubble destruction mediated short hairpin RNA plasmid transfection targeting survivin inhibits gene expression and induces apoptosis of HeLa cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Survivin is an attractive target for tumor growth inhibition and represents a significant approach to anticancer therapy. RNA interference is an important tool for specifically down-regulating the expression of cellular genes. However, the efficiency of short hairpin RNA (shRNA) on the expression of survivin gene and the influence on the cell apoptosis transfected by the non-viral gene transfer system of ultrasound-targeted microbubble destruction was not explored. In this work, recombinant expression plasmid of shRNA targeting survivin gene was constructed and added to cultured cervical cancer cells followed by ultrasound exposure and SonoVue® microbubble. Expression of survivin mRNA and protein were assessed by RT-PCR and western blot analysis. Apoptosis ratio was quantified by flow cytometry marked with annexin V and 7-AAD. After transfected for 48 h, the expression of survivin mRNA and protein were (16.67 ± 2.73)% and (21.33 ± 3.55)%, respectively. The apoptosis rate was (45.41 ± 1.47)%. The differences were significant as compared with other groups (P < 0.01). In conclusion, we suggested that survivin could be regarded as an ideal anticancer target of cervical cancer. Recombinant expression plasmid of shRNA targeting survivin gene mediated by ultrasound-targeted microbubble destruction technique could effectively inhibit the expression of target gene and induce cell apoptosis. This novel method for RNA interference represents a powerful, promising non-viral technology that can be used in the tumor gene therapy and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ai Z, Yin L, Zhou X et al (2006) Inhibition of survivin reduces cell proliferation and induces apoptosis in human endometrial cancer. Cancer 107:746–756. doi:10.1002/cncr.22044

    Article  CAS  PubMed  Google Scholar 

  2. Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46–54. doi:10.1038/nrc968

    Article  CAS  PubMed  Google Scholar 

  3. Kappler M, Bache M, Bartel F et al (2004) Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther 11:186–193. doi:10.1038/sj.cgt.7700677

    Article  CAS  PubMed  Google Scholar 

  4. Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9:360–372. doi:10.1111/j.1582-4934.2005.tb00361.x

    Article  CAS  PubMed  Google Scholar 

  5. Pennati M, Folini M, Zaffaroni N (2007) Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28:1133–1139. doi:10.1093/carcin/bgm047

    Article  CAS  PubMed  Google Scholar 

  6. Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5:355–365. doi:10.1038/nrg1323

    Article  CAS  PubMed  Google Scholar 

  7. Shankar P, Manjunath N, Lieberman J (2005) The prospect of silencing disease using RNA interference. JAMA 293:1367–1373. doi:10.1001/jama.293.11.1367

    Article  CAS  PubMed  Google Scholar 

  8. Moffat J, Sabatini DM (2006) Building mammalian signaling pathways with RNAi screens. Nat Rev Mol Cell Biol 7:177–187. doi:10.1038/nrm1860

    Article  CAS  PubMed  Google Scholar 

  9. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184. doi:10.1038/nrg2006

    Article  CAS  PubMed  Google Scholar 

  10. Yuan J, Wang X, Zhang Y et al (2006) shRNA transcribed by RNA Pol II promoter induce RNA interference in mammalian cell. Mol Biol Rep 33:43–49. doi:10.1007/s11033-005-3965-1

    Article  CAS  PubMed  Google Scholar 

  11. Li Q, Yan W, Cheng S et al (2006) Introduction of G1 phase arrest in human hepatocellular carcinoma cells (HHCC) by APMCF1 gene transfection through the down-regulation of TIMP3 and up-regulation of the CDK inhibitors p21. Mol Biol Rep 33:257–263. doi:10.1007/s11033-006-9007-9

    Article  PubMed  Google Scholar 

  12. Zhen HN, Li LW, Zhang W et al (2007) Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int J Oncol 31:1111–1117

    CAS  PubMed  Google Scholar 

  13. Paddison PJ, Caudy AA, Bernstein E et al (2002) Short hairpin RNAs (shRNA) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958. doi:10.1101/gad.981002

    Article  CAS  PubMed  Google Scholar 

  14. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553. doi:10.1126/science.1068999

    Article  CAS  PubMed  Google Scholar 

  15. Ling X, Li F (2004) Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques 36:450–460

    CAS  PubMed  Google Scholar 

  16. Gan HZ, Zhang GZ, Zhao JS et al (2005) Reversal of MDR1 gene-dependent multidrug resistance using short hairpin RNA expression vectors. Chin Med J (Engl) 118:893–902

    CAS  Google Scholar 

  17. Bekeredjian R, Kroll RD, Fein E et al (2007) Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol 33:1592–1598. doi:10.1016/j.ultrasmedbio.2007.05.003

    Article  PubMed  Google Scholar 

  18. Guo DP, Li XY, Sun P et al (2006) Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells. Biochem Biophys Res Commun 343:470–474. doi:10.1016/j.bbrc.2006.02.179

    Article  CAS  PubMed  Google Scholar 

  19. Chen S, Ding JH, Bekeredjian R et al (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci USA 103:8469–8474. doi:10.1073/pnas.0602921103

    Article  CAS  PubMed  Google Scholar 

  20. Vancraeynest D, Havaux X, Pouleur AC et al (2006) Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction. Eur Heart J 27:237–245. doi:10.1093/eurheartj/ehi479

    Article  CAS  PubMed  Google Scholar 

  21. Bekeredjian R, Katus HA, Kuecherer HF (2006) Therapeutic use of ultrasound targeted microbubble destruction: A review of non-cardiac applications. Ultraschall Med 27:134–140. doi:10.1055/s-2005-858993

    Article  CAS  PubMed  Google Scholar 

  22. Shibuya H, Kato Y, Saito M et al (2003) Induction of apoptosis and/or necrosis following exposure to antitumour agents in a melanoma cell line, probably through modulation of Bcl-2 family proteins. Melanoma Res 13:457–464. doi:10.1097/01.cmr.0000056267.56735.a8

    Article  CAS  PubMed  Google Scholar 

  23. Russo A, Terrasi M, Agnese V et al (2006) Apoptosis: a relevant tool for anticancer therapy. Ann Oncol 17(Suppl 7):vii115–vii123

    Article  PubMed  Google Scholar 

  24. Carvalho A, Carmena M, Sambade C et al (2003) Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116:2987–2998. doi:10.1242/jcs.00612

    Article  CAS  PubMed  Google Scholar 

  25. Capalbo G, Rödel C, Stauber RH et al (2007) The role of survivin for radiation therapy. Prognostic and predictive factor and therapeutic target. Strahlenther Onkol 183:593–599. doi:10.1007/s00066-007-1800-4

    Article  PubMed  Google Scholar 

  26. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652. doi:10.1038/sj.gt.3301923

    Article  CAS  PubMed  Google Scholar 

  27. Unger EC, Matsunaga TO, McCreery T et al (2002) Therapeutic applications of microbubbles. Eur J Radiol 42:160–168. doi:10.1016/S0720-048X(01)00455-7

    Article  PubMed  Google Scholar 

  28. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166. doi:10.1016/j.addr.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  29. Miller DL, Pislaru SV, Greenleaf JE (2002) Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 27:115–134. doi:10.1023/A:1022983907223

    Article  CAS  PubMed  Google Scholar 

  30. Wang JF, Wu CJ, Zhang CM et al (2008) Ultrasound-mediated microbubble destruction facilitates gene transfection in rat C6 glioma cells. Mol Biol Rep [Epub ahead of print] doi: 10.1007/s11033-008-9307-3

Download references

Acknowledgments

We thank Mr. Zhenhui He (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China) for helpful technical discussion about this work, thank Mr. Zhihui Liang for flow cytometry assays (College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China), and thank Mr. Zhijiang Liang (Department of Epidemiology and Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China) for statistical direction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Chen.

Additional information

Zhiyi Chen and Kun Liang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Liang, K., Xie, M. et al. Novel ultrasound-targeted microbubble destruction mediated short hairpin RNA plasmid transfection targeting survivin inhibits gene expression and induces apoptosis of HeLa cells. Mol Biol Rep 36, 2059–2067 (2009). https://doi.org/10.1007/s11033-008-9417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9417-y

Keywords

Navigation