Skip to main content

Advertisement

Log in

Concordant correlation of LIV-1 and E-cadherin expression in human breast cancer cell MCF-7

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The recent report highlighted a significant association between signal transducer and activator of transcription 3 (STAT3) and Snail and LIV-1 (SLC39A6 or ZIP6), the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. LIV-1 is a downstream target of STAT3, both in zebrafish and mammalian cells and provides control over epithelial-mesenchymal transition (EMT). Crucially, these observations link LIV-1, previously demonstrated to be associated with lymph node metastasis in breast cancer, to genes with a proven role in development. A putative role of LIV-1 as a regulator of E-cadherin that modulates the cell-cell adhesion is thus inferred. In present study, the correlation of LIV-1 and E-cadherin expression in human breast cancer cell MCF-7 and the effect of LIV-1 expression on the cell growth were assessed to explore the possible mechanisms associated with this observation in breast cancer. It was shown that the silencing of LIV-1 would induce the down-expression of E-cadherin. There was opposite results if the cells were overexpressed with LIV-1. In addition, the results showed that promotion effect after silencing of LIV-1 and inhibition effect after overexpression of LIV-1 in transfected cells. To our knowledge, this is the first evidence that the expression of E-cadherin could be regulated by the zinc transporter LIV-1. The results suggest that there is an association of LIV-1 expression with less aggressive tumors due to high E-cadherin expression because of high LIV-1 expression. LIV-1 may be a regulator of E-cadherin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

STAT3:

Signal transducer and activator of transcription 3

EMT:

Epithelial-mesenchymal transition

ZIP:

Zrt-, Irt-like proteins

LZT:

LIV-1 subfamily of ZIP zinc transporters

RT-PCR:

Reverse transcription polymerase chain reaction

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide

MT:

Metallothioneins

CDF:

Cation diffusion facilitator

References

  1. Manning DL, Daly RJ, Lord PG et al (1988) Effects of oestrogen on the expression of a 4.4 kb mRNA in the ZR-75-1 human breast cancer cell line. Mol Cell Endocrinol 59:205–212

    Article  PubMed  CAS  Google Scholar 

  2. Manning DL, McClelland RA, Knowlden JM et al (1995) Differential expression of oestrogen regulated genes in breast cancer. Acta Oncol 34:641–646

    Article  PubMed  CAS  Google Scholar 

  3. McClelland RA, Manning DL, Gee JM et al (1998) Oestrogen-regulated genes in breast cancer: association of pLIV1 with response to endocrine therapy. Br J Cancer 77:1653–1656

    PubMed  CAS  Google Scholar 

  4. Manning DL, Robertson JF, Ellis IO et al (1994) Oestrogen-regulated genes in breast cancer: association of pLIV1 with lymph node involvement. Eur J Cancer 30A:675–678

    Article  PubMed  CAS  Google Scholar 

  5. Taylor KM, Nichiolson RI (2003) The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta 1611:16–30

    Article  PubMed  CAS  Google Scholar 

  6. Taylor KM, Morgan HE, Johnson A et al (2003) Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J 375:51–59

    Article  PubMed  CAS  Google Scholar 

  7. Yamashita S, Miyagi C, Fukada T et al (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429:298–302

    Article  PubMed  CAS  Google Scholar 

  8. Taylor KM, Hiscox S, Nicholson RI (2004) Zinc transporter LIV-1: a link between cellular development and cancer progression. Trends Endocrinol Metab 15:461–463

    Article  PubMed  CAS  Google Scholar 

  9. Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20:446–448

    Article  PubMed  CAS  Google Scholar 

  10. Zielske SP, Stevenson M (2005) Importin 7 may be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages. J Virol 79:11541–11546

    Article  PubMed  CAS  Google Scholar 

  11. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  PubMed  CAS  Google Scholar 

  12. Kagi JH, Valee BL (1960) Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460–3465

    PubMed  CAS  Google Scholar 

  13. Cherian MG, Howell SB, Imura N et al (1994) Role of metallothionein in carcinogenesis. Toxicol Appl Pharmacol 126:1–5

    Article  PubMed  CAS  Google Scholar 

  14. Eide D (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447:796–800

    Article  PubMed  CAS  Google Scholar 

  15. Kambe T, Yamaguchi-Iwai Y, Sasaki R et al (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    Article  PubMed  CAS  Google Scholar 

  16. Kim SY, Kim JW, Ko YS et al (2003) Changes in lipid per oxidation and antioxidant trace elements in serum of women with cervical intraepithelial neoplasia and invasive cancer. Nutr Cancer 47:126–130

    Article  PubMed  CAS  Google Scholar 

  17. Tandon M, Kapil U, Bahadur S et al (2000) Role of micronutrients and trace elements in carcinoma of larynx. J Assoc Physicians India 48:995–998

    PubMed  CAS  Google Scholar 

  18. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  19. Shankar AH, Prasad AS (1998) Zinc and immune function, the biological basis of altered resistance to infection. Am J Clin Nutr 68:447–463

    Google Scholar 

  20. Barceloux DG (1999) Zinc. J Toxicol Clin Toxicol 37:279–292

    Article  PubMed  CAS  Google Scholar 

  21. Strain JJ (1994) Putative role of dietary trace element in coronary heart disease and cancer. Br J Biomed Sci 51:241–251

    PubMed  CAS  Google Scholar 

  22. Navarro-Silvera SA, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18:7–27

    Article  PubMed  Google Scholar 

  23. Cui Y, Vogt S, Olson N et al (2007) Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomarkers Prev 16:1682–1685

    Article  PubMed  CAS  Google Scholar 

  24. Kasper G, Weiser AA, Rump A et al (2005) Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer 117:961–973

    Article  PubMed  CAS  Google Scholar 

  25. Taylor KM, Morgan HE, Smart K et al (2007) The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 13:396–406

    Article  PubMed  CAS  Google Scholar 

  26. Shiozaki H, Oka H, Inoue M et al (1996) E-cadherin mediated adhesion system in cancer cells. Cancer 77:1605–1613

    PubMed  CAS  Google Scholar 

  27. Bukholm IK, Nesland JM, Karesen R et al (1998) E-cadherin and α-, β-, and γ-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 185:262–266

    Article  PubMed  CAS  Google Scholar 

  28. Van Aken E, De Wever O, Correia da Rocha AS et al (2001) Defective E-cadherin/catenin complexes in human cancer. Virchows Arch 439:725–751

    PubMed  Google Scholar 

  29. Costello LC, Feng P, Milon B et al (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7:111–117

    Article  PubMed  CAS  Google Scholar 

  30. Costello LC, Franklin RB, Feng P (2005) Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5:143–153

    Article  PubMed  CAS  Google Scholar 

  31. Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5:17

    Article  PubMed  Google Scholar 

  32. Sun DX, Zhang LY,Wang YS et al (2007) Regulation of zinc transporters by dietary zinc supplement in breast cancer. Mol Biol Rep 34:241–247

    Article  PubMed  CAS  Google Scholar 

  33. Zhao L, Chen W, Taylor KM et al (2007) LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway. Biochem Biophys Res Commun 363:82–88

    Article  PubMed  CAS  Google Scholar 

  34. Ohkubo T, Ozawa M (2004) The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117:1675–1685

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. M. Taylor (Tenovus Cancer Research Centre, Welsh School of Pharmacy, Cardiff University, U.K.) for kindly providing us the LIV-1 recombinant. We also thank Dr. Qiuli Chen for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shen.

Additional information

H. Shen and H. Qin are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, H., Qin, H. & Guo, J. Concordant correlation of LIV-1 and E-cadherin expression in human breast cancer cell MCF-7. Mol Biol Rep 36, 653–659 (2009). https://doi.org/10.1007/s11033-008-9225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9225-4

Keywords

Navigation