Skip to main content
Log in

A flowering time locus dependent on E2 in soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Soybean [Glycine max (L.) Merrill] is very sensitive to changes in photoperiod as a typical short-day plant. Photoperiodic flowering influences soybean latitudinal adaptability and yield to a considerable degree. Identifying new quantitative trait loci (QTLs) controlling flowering time is a powerful initial approach for elucidating the mechanisms underlying flowering time and adaptation to different latitudes in soybean. In this study, we developed a Recombinant Inbred Lines (RILs) population and recorded flowering time under natural long-day conditions. We also constructed a high-density genetic map by genotyping-by-sequencing and used it for QTL mapping. In total, we detected twelve QTLs, four of which are stable and named by qR1-2, qR1-4, qR1-6.1, and qR1-10, respectively. Among these four QTLs, qR1-4 and qR1-6.1 are novel. QTL mapping in two sub-populations classified by the genotype of the maturity locus E2, genetic interaction evaluation between E2 and qR1-2, and qRT-PCR indicated that E2 has an epistatic effect on qR1-2, and that causal gene of qR1-2 acts upstream of E2. We presumed the most likely candidate genes according to the resequencing data and briefly analyzed the geographic distributions of these genes. These findings will be beneficial for our understanding of the mechanisms underlying photoperiodic flowering in soybean, contribute to further investigate of E2, and provide genetic resources for molecular breeding of soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Bernard RL (1971) Two major genes for time of flowering and maturity in soybean. Crop Sci 11:242–244

    Google Scholar 

  • Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232

    Google Scholar 

  • Bu Z, Yu Y, Li Z, Liu Y, Jiang W, Huang Y, Dong A (2014) Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. Plos genetics 10(9):e1004617

  • Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol 13:703–707

    Google Scholar 

  • Buzzell RI, Voldeng HD (1980) Inheritance of insensitivity to long daylength. Soybean Genet Newslett 7:26–29

    Google Scholar 

  • Cao D, Li Y, Lu S, Wang J, Nan H, Li X, Shi D, Fang C, Zhai H, Yuan X, Anai T, Xia Z, Liu B, Kong F (2015) GmCOL1a and GmCOL1b function as flowering repressors in soybean under long-day conditions. Plant Cell Physiol 56(12):2409–2422

  • Cheng W, Liu F, Li M, Hu X, Chen H, Pappoe F (2015) Variation detection based on next-generation sequencing of type Chinese 1 strains of Toxoplasma gondii with different virulence from China. BMC Genomics 16:888

    PubMed  PubMed Central  Google Scholar 

  • Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423:881–885

    CAS  PubMed  Google Scholar 

  • Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701

    Google Scholar 

  • Cober ER, Tanner JW, Voldeng HD (1996) Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Science 36(3):606

  • Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527

    Google Scholar 

  • Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML (2013) Special features of RAD sequencing data: implications for genotyping. Mol Ecol 22:3151–3164

    CAS  PubMed  Google Scholar 

  • Dissanayaka A, Rodriguez TO, Di S, Yan F, Githiri SM, Rodas FR, Abe J, Takahashi R (2016) Quantitative trait locus mapping of soybean maturity gene E5. Breed Sci 66(3):407–415

  • Fang C, Liu J, Zhang T, Su T, Li S, Cheng Q, Kong L, Li X, Bu T, Li H, Dong L, Lu S, Kong F, Liu B (2020) A recent retrotransposon insertion of J caused E6 locus facilitating soybean adaptation into low latitude. J Integr Plant Biol. https://doi.org/10.1111/jipb.13034

    Article  PubMed  Google Scholar 

  • Fehr WR (1987) Principles of cultivar development. Macmillan, London

    Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931

    Google Scholar 

  • Harada K, Watanabe S, Xia Z, Tsubokura Y, Yamanaka N (2011) Anai T Positional cloning of the responsible genes for maturity loci E1, E2 and E3 in soybean [M]. Chap 3:51–79

    Google Scholar 

  • Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJ, Weller JL (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144:648–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:9789–9794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638

    CAS  PubMed  Google Scholar 

  • Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, Motoyama R, Sawada Y, Yano M, Hirai MY, Makino A, Nagamura Y (2011) Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 23:1741–1755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Jiang B, Wu C, Lu W, Hou W, Sun S, Yan H, Han T, Yin T (2014) Maturity group classification and maturity locus genotyping of early-maturity soybean varieties from high-latitude cold regions. PLoS ONE 9:e94139

    PubMed  PubMed Central  Google Scholar 

  • Jiang B, Nan H, Gao Y, Tang L, Yue Y, Lu S, Ma L, Cao D, Sun S, Wang J, Wu C, Yuan X, Hou W, Kong F, Han T, Liu B (2014) Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE 9:e106042

    PubMed  PubMed Central  Google Scholar 

  • Khan N, Githiri S, Benitez E, Abe J, Kawasaki S, Hayashi T (2008) Takahashi R QTL analysis of cleistogamy in soybean. Theor Appl Genet 117:479–487

    CAS  PubMed  Google Scholar 

  • Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, Karine D, Joanna P, Gil N, David ES (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449(7160):356–360

    CAS  PubMed  Google Scholar 

  • Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong F, Nan H, Cao D, Li Y, Wu F, Wang J, Lu S, Yuan X, Cober ER, Abe J, Liu B (2014) A new dominant gene conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535

    Google Scholar 

  • Lee K, Kim D, Kim J, Jo S, Kang S, Choi H, Ha B (2016) Identification of candidate genes for an early-maturity soybean mutant by genome resequencing analysis. Mol Genet Genomics 291:1561–1571

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short rea alignment with Burrows Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li MW, Lam HM (2020) The modification of circadian clock components in soybean during domestication and improvement. Front Genet 11:571188

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li F, Zhang X, Hu R, Wu F, Ma Y, Fu Y (2013) Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS ONE 8(11):e79036

    PubMed  PubMed Central  Google Scholar 

  • Li X, Fang C, Xu M, Zhang F, Lu S, Nan H, Su T, Li S, Zhao X, Kong L, Yuan X, Liu B, Abe J, Cober ER, Kong F (2017) Quantitative trait locus mapping of soybean maturity gene E6. Crop Sci 57(5):2547

    CAS  Google Scholar 

  • Lin X, Liu B, Weller JL, Abe J, Kong F (2021) Molecular mechanisms for the photoperiodic regulation of flowering in soybean. J Integr Plant Biol. https://doi.org/10.1111/jipb.13021

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photo responses associated with duplication of the Phytochrome A gene. Genetics 180:995–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Kim MY, Kang YJ, Van K, Lee YH, Srinives P, Yuan DL, Lee SH (2011) QTL identification of flowering time at three different latitudes reveals homeologous genomic regions that control flowering in soybean. Theor Appl Genet 123:545–553

    PubMed  Google Scholar 

  • Liu J, Cheng X, Liu P, Li D, Chen T, Gu X, Sun J (2017) MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. Plos Genet 13(5):e1006833

    PubMed  PubMed Central  Google Scholar 

  • Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober ER, Weller JL, Liu B, Hou X, Tian Z, Kong F (2017) Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49:773–779

    CAS  PubMed  Google Scholar 

  • Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang T, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller J, Kong F (2020) Stepwise selection on homologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52:428–436

    CAS  PubMed  Google Scholar 

  • Mao T, Li J, Wen Z, Wu T, Wu C, Sun S, Jiang B, Hou W, Li W, Song Q, Wang D, Han T (2017) Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics 18:415

    PubMed  PubMed Central  Google Scholar 

  • McBlain BA, Bernard RL (1987) A new gene affecting the time of flowering-maturity in soybeans. J Hered 178:68–70

    Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL icimapping:integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Oliverio K, Crepy M, Martin-Tryon E, Milich R, Harmer S, Putterill J, Yanovsky M, Casal J (2007) GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol 144:495–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pooprompan P, Wasee S, Toojinda T, Abe J, Chanprame S, Srinives P (2006) Molecular marker analysis of days to flowering in vegetable soybean (Glycine max (L.) Merrill). Kasetsart J Nat Sci 40(3):2487–2489

    Google Scholar 

  • Ray JD, Hinson K, Mankono JEB, Malo MF (1995) Genetic control of a long-juvenile trait in soybean. Crop Sci 35:1001–1006

    Google Scholar 

  • Rival P, Press MO, Bale J, Grancharova T, Undurraga SF, Queitsch C (2014) The conserved PFT1 tandem repeat is crucial for proper flowering in Arabidopsis thaliana. Genetics 198:747–754

  • Saindon G, Beversdorf WD, Voldeng HD (1989a) Adjusting of the soybean phenology using the E4 loci. Crop Sci 29:1361–1365

    Google Scholar 

  • Saindon G, Voldeng HD, Beversdorf WD, Buzzell RI (1989b) Genetic control of long daylength response in soybean. Crop Sci 29:1436–1439

    Google Scholar 

  • Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober ER (2017) Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet 130(2):377–390

    PubMed  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318(5848):261–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Takato I (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci U S A 111(49):17672–17677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tasma IM, Lorenzen LL, Green DE, Shoemaker RC (2001) Mapping genetic loci flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breeding 8:25–35

    CAS  Google Scholar 

  • Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113:429–441

    CAS  PubMed  Google Scholar 

  • Upadhyay AP, Ellis RH, Summerfield RJ, Roberts ER, Qi A (1994) Characterization of photothermal flowering responses in maturity isolines of soybean (Glycine (L.) Merrill) cv. Clark. Ann Bot 74:87–96

    CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gu Y, Gao H, Qiu L, Chang R, Chen S, He C (2016) Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol Biol 16(1):79

  • Wang F, Nan H, Chen L, Fang C, Zhang H, Su T, Li S, Cheng Q, Dong L, Liu B, Kong F, Lu S (2019) A new dominant locus, E11, controls early flowering time and maturity in soybean. Mol Breed 39:70

    Google Scholar 

  • Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K (2004) Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci 54:399–407

    CAS  Google Scholar 

  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Harada K, Abe J (2012) Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci 61:531–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B, Yamada T, Abe J (2015) The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol 168(4):1735–1746

  • Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8:61–72

    CAS  PubMed  Google Scholar 

  • Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, Kanazawa A, Liu B, Kong F, Yamada T, Abe J (2016) A recessive allele for delayed flowering at the soybean maturity LOCUS E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol 16:20

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang Y, Luo G, Zhang J, He C, Wu X, Gai J, Chen S (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Mrs. Yafeng Liu for phenotyping and managing the filed.

Funding

This work was supported by Natural Key R&D Program of China (2017YFE0111000); EUCLEG Horizon 2020 of European Union (727312); National Natural Science Foundation of China (31930083, 31725021); the Major Program of Guangdong Basic and Applied Research (2019B030302006); the Open Project Foundation of National Key Laboratory for Crop Genetics and Germplasm Enhancement (ZW201901); Heilongjiang Academy of Agricultural Sciences Fund for Distinguished Young Scholars (2020JCQN005); and Heilongjiang Provincial Science and Technology Major Project (2019ZX16B01).

Author information

Authors and Affiliations

Authors

Contributions

CF designed the experiments. TS, YW, SL, LW, KK, LK, QC, and LD carried out the experiments. TS, BL, FK, SL, and CF analyzed the data. TS, FK, SL, and CF wrote the paper.

Corresponding authors

Correspondence to Fanjiang Kong, Sijia Lu or Chao Fang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 3410 kb)

ESM 2

(XLSX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Wang, Y., Li, S. et al. A flowering time locus dependent on E2 in soybean. Mol Breeding 41, 35 (2021). https://doi.org/10.1007/s11032-021-01224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01224-1

Keywords

Navigation