Skip to main content
Log in

Predominant wheat-alien chromosome translocations in newly developed wheat of China

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Founder wheat lines have played key role in Chinese wheat improvement. Wheat-Dasypyrum villosum translocation T6VS·6AL has been widely used in wheat breeding in recent years due to its high level of powdery mildew resistance and other beneficial genes. Reference oligo-nucleotide multiplex probe (ONMP)–FISH karyotypes of six T6VS·6AL donor lines were developed and used for characterizing 32 derivative cultivars and lines. T6VS·6AL was present in 27 cultivar/lines with 20 from southern China. Next, ONMP–FISH was used to study chromosome constitution of randomly collected wheat cultivars and advanced breeding lines from southern and northern regions of China: 123 lines from the regional test plots of southern China and 110 from northern China. In southern China, T6VS·6AL (35.8%) was the most predominant variation, while T1RS·1BL (27.3%) was the most predominant in northern China. The pericentric inversion perInv 6B derived from its founder wheat Funo and Abbondaza was the second most predominant chromosome variant in both regions. Other chromosome variants were present in very low frequencies. Additionally, 167 polymorphic chromosome types were identified. Based on these variations, 271 cultivars and lines were clustered into three groups, including southern, northern, and mixed groups that contained wheat from both regions. Different dominant chromosome variations were seen, indicating chromosome differentiation in the three groups of wheat. The clearly identified wheat lines with T6VS·6AL in different backgrounds and oligonucleotide probe set will facilitate their utilization in wheat breeding and in identifying other beneficial traits that may be linked to this translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoun M, Breiland M, Kathryn Turner M, Loladze A, Chao S, Xu SS, Ammar K, Anderson JA, Kolmer JA, Acevedo M (2016) Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection. Plant Genome 9. https://doi.org/10.3835/plantgenome2016.01.0008

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733. https://doi.org/10.1007/s00122-007-0603-4

  • Bie T, Zhao R, Jiang Z, Gao D, Zhang B, He H (2015) Efficient marker-assisted screening of structural changes involving Haynaldia villosa chromosome 6V using a double-distal-marker strategy. Mol Breeding 35:34. https://doi.org/10.1007/s11032-015-0211-y

    Article  CAS  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci U S A 108:7727–7732. https://doi.org/10.1073/pnas.1016981108

  • Cao Y, Cao A, Wang X, Chen P (2009) Screening and application of EST-based PCR markers specific to individual chromosomes of Haynaldia villosa. Acta Agron Sin 35:1–10. https://doi.org/10.3724/sp.J.1006.2009.00001. [In Chinese with English abstract.]

  • Chen J, Zhang F, Zhao C, Lv G, Sun C, Pan Y, Guo X, Chen F (2019) Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J 17:2106–2122. https://doi.org/10.1111/pbi.13126

  • Chen P, Qi L, Zhou B, Zhang Z, Liu D (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128. https://doi.org/10.1007/bf00223930

  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breeding 31:477–484. https://doi.org/10.1007/s11032-012-9804-x

    Article  CAS  Google Scholar 

  • Chen S, Chen P (2010) Development of the specific EST markers for the 6V chromosome short arm of Haynaldia Villosa and location of their deletion. J Triticeae Crops 30:789–795. https://doi.org/10.1080/00949651003724790

  • Cheng H, Liu J, Wen J, Nie X, Xu L, Chen N, Li Z, Wang Q, Zheng Z, Li M, Cui L, Liu Z, Bian J, Wang Z, Xu S, Yang Q, Appels R, Han D, Song W, Sun Q, Jiang Y (2019) Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol 20:136. https://doi.org/10.1186/s13059-019-1744-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Li S, He Y, Tang Z, Ren Y (2019) Structural variation of 6VS/6AL translocation chromosomes in Mianmai 37 and its derivativs. J Triticeae Crops 39:659–665. https://doi.org/10.4606/j.issn.1009-1041.2019.06.05

  • Du P, Zhuang L, Wang Y, Yuan L, Wang Q, Wang D, Dawadondup TL, Shen J, Xu H, Zhao H, Chu C, Qi Z (2017) Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60:93–103. https://doi.org/10.1139/gen-2016-0095

    Article  CAS  PubMed  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807. https://doi.org/10.1007/s00122-013-2257-8

  • Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization in wheat. Genetics 192:763–774. https://doi.org/10.1534/genetics.112.146316

  • Fu X, Liu Q, Li Z, Zhang A, Ling H, Tong Y, Liu Z (2018) Research achievement and prospect development on wheat genome. Bulletin of Chinese Academy of Sciences 33:909–914. https://doi.org/10.16418/j.issn.1000-3045.2018.09.003. [In Chinese with English abstract]

  • Ge H, Wang L, You G, Hao C, Dong Y, Zhang X (2009) Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin 42:1503–1511. https://doi.org/10.3864/j.issn.0578-1752.2009.05.001. [In Chinese with English abstract]

  • Gorafi Y, Kim J, Elbashir A, Tsujimoto H (2018) A population of wheat multiple synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theor Appl Genet 131:1615–1626. https://doi.org/10.1007/s00122-018-3102-x

  • Guo J, Lei Y, Zhang H, Song D, Liu X, Cao Z, Chu C, Zhuang L, Qi Z (2019) Frequent variations in tandem repeats pSc200 and pSc119.2 cause rapid chromosome evolution of open-pollinated rye. Mol Breeding 39. https://doi.org/10.3724/SP.J.1006.2009.01395

  • Han J, Zhang L, Li J, Shi L, Xie C, You M, Yang Z, Liu G, Sun Q, Liu Z (2009) Molecular dissection of core parental cross “Triumph/Yanda1817” and its derivatives in wheat breeding program. Acta Agron Sin 35:1395–1404. https://doi.org/10.3724/SP.J.1006.2009.01395. [In Chinese with English abstract]

  • Hao C, Wang Y, Chao S, Li T, Liu H, Wang L, Zhang X (2017) The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep 7:41247. https://doi.org/10.1038/srep41247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Ji Y, Zhu S, Li B, Zhao R, Jiang Z, Bie T (2017) Genetic, physical and comparative mapping of the powdery mildew resistance gene Pm21 originating from Dasypyrum villosum. Frontiers Plant Sci 8:1914. https://doi.org/10.3389/fpls.2017.01914

    Article  Google Scholar 

  • He H, Zhu S, Jiang Z, Ji Y, Wang F, Zhao R, Bie T (2016) Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat. Theor Appl Genet 129:819–829. https://doi.org/10.1007/s00122-016-2668-4

  • He H, Zhu S, Sun W, Gao D, Bie T, Igartua E (2013) Efficient development of Haynaldia villosa chromosome 6VS-specific DNA markers using a CISP-IS strategy. Plant Breed 132:290–294. https://doi.org/10.1111/pbr.12035

    Article  CAS  Google Scholar 

  • He Z, Xia X, Chen X, Zhuang Q (2011) Progress of wheat breeding in China and the future perspective. Acta Agron Sin 37:202–215. https://doi.org/10.3724/sp.J.1006.2011.00202. [In Chinese with English abstract]

  • Herter CP, Ebmeyer E, Kollers S, Korzun V, Leiser WL, Wurschum T, Miedaner T (2018) Rht24 reduces height in the winter wheat population ‘Solitar x Bussard’ without adverse effects on Fusarium head blight infection. Theor Appl Genet 131:1263–1272. https://doi.org/10.1007/s00122-018-3076-8

  • Hu M, Zhang H, Liu K, Cao J, Wang S, Jiang H, Wu Z, Lu J, Zhu X, Xia X, Sun G, Ma C, Chang C (2016) Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Front Plant Sci 7:1902. https://doi.org/10.3389/fpls.2016.01902

  • Huang X, Zhu M, Zhuang L, Zhang S, Wang J, Chen X, Wang D, Chen J, Bao Y, Guo J, Zhang J, Feng Y, Chu C, Du P, Qi Z, Wang H, Chen P (2018) Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet 131:1967–1986. https://doi.org/10.1007/s00122-018-3126-2

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:1–13. https://doi.org/10.1126/science.aar7191

    Article  CAS  Google Scholar 

  • Kishii M, Huerta J, Tsujimoto H, Matsuoka Y (2019) Stripe rust resistance in wild wheat Aegilops tauschii Coss.: genetic structure and inheritance in synthetic allohexaploid Triticum wheat lines. Genet Resour Crop Evol 66:909–920. https://doi.org/10.1007/s10722-019-00758-w

  • Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y, Xia X (2018b) Genome-wide linkage mapping of yield-related traits in three chinese bread wheat populations using high-density SNP markers. Theor Appl Genet 131:1–22. https://doi.org/10.1007/s00122-018-3122-6

  • Li G, Chen P, Zhang S, Wang X, He Z, Zhang Y, Zhao H, Huang H, Zhou X (2006) Effects of the T6VS·6AL translocation on agronomic traits and dough properties of wheat. Euphytica 155:305–313. https://doi.org/10.1007/s10681-006-9332-z

    Article  Google Scholar 

  • Li H, Chen Q, Jia X, Li H, Graf R, Laroche A, Kuzyk A (2002) Different reactions to the wheat curl mite and wheat streak mosaic virus in various wheat-Haynaldia villosa 6V and 6VS lines. Plant Dis 86:423–428. https://doi.org/10.1094/PDIS.2002.86.4.423

  • Li H, Chen X, Shi A, Kong F, Leath S, Murphy J, Jia X (2005) Characterization of RAPD markers and RFLP marker linked to powdery mildew resistant gene derived from different H. villosa. Sci Agric Sin 38:439–445. [In Chinese with English abstract]

  • Li T, Liu H, Mai C, Yu G, Li H, Meng L, Jian D, Yang L, Zhou Y, Zhang H, Li H (2019b) Variation in allelic frequencies at loci associated with kernel weight and their effects on kernel weight-related traits in winter wheat. Crop J 7:30–37. https://doi.org/10.1016/j.cj.2018.08.002

    Article  Google Scholar 

  • Li X, Wang T, Li Y (2019a) Formation, research and utilization of founder parents in major crops. J Plant Genetic Resour 20:1093–1102. https://doi.org/10.13430/j.cnki.jpgr.20190505003. [In Chinese with English abstract]

  • Li X, Xia X, Xiao Y, He Z, Wang D, Trethowan R, Wang H, Chen X (2015) QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop Pasture Sci 66:660–670. https://doi.org/10.1071/CP14236

    Article  CAS  Google Scholar 

  • Li X, Xu X, Liu W, Li X, Li L (2009) Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin 42:3397–3404. https://doi.org/10.3864/j.issn.0578-1752.2009.10.003. [In Chinese with English abstract]

  • Li Z, Yang J, Li R, Wang X, Zhang X, Zhang L (2018a) Composition and distribution of major vernalization genes in wheat cultivars from main production areas in China. J Northwest A&F Univ 46:35–40. https://doi.org/10.13207/j.cnki.jnwafu.2018.09.005. [In Chinese with English abstract]

  • Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X (2020) TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J 18:1330–1342. https://doi.org/10.1111/pbi.13298

  • Liu J, Tao W, Liu D, Chen P, Li W (1999a) Transmission of 6VS chromosome in wheat-Haynaldia villosa translocation lines and genetic stability of Pm21 carried by 6VS. Acta Bot Sin 41:1058–1060. https://doi.org/10.1016/S0168-9452(99)00123-5. [In Chinese with English abstract]

  • Liu X, Si Q, Li Q, Wang C, Wang Y, Zhang H, Ji W (2012) SSR analysis of genetic diversity and temporal trends of the core wheat (Triticum aestivum L.) parent Funo and its derivative varieties (lines). J Agric Biotechnol 20:983–995. https://doi.org/10.3969/j.issn.1674-7968.2012.09.002. [In Chinese with English abstract]

  • Liu Z, Sun Q, Ni Z, Yang T (1999b) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219. https://doi.org/10.1046/j.1439-0523.1999.118003215.x

    Article  CAS  Google Scholar 

  • Ling H, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJ, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C (2018) Genome sequence of the progenitor of wheat a subgenome Triticum urartu. Nature 557:424–428. https://doi.org/10.1038/s41586-018-0108-0

  • Ma J, Zhou R, Dong Y, Wang L, Wang X, Jia J (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120:219–226. https://doi.org/10.1023/A:1017510331721

    Article  CAS  Google Scholar 

  • Ma J, Qin N, Cai B, Chen G, Ding P, Zhang H, Yang C, Huang L, Mu Y, Tang H, Liu Y, Wang J, Qi P, Jiang Q, Zheng Y, Liu C, Lan X, Wei Y (2019) Identification and validation of a novel major QTL for all-stage stripe rustresistance on 1BL in the winter wheat line 20828. Theor Appl Genet 132:1363–1137. https://doi.org/10.1007/s00122-019-03283-7

  • Ma Q (2007) Genetic analysis of new wheat recombinant inbred lines population derived from wheat-Haynaldia villosa 6VS·6AL translocation and Huixianhong and some agronomic traits. Master's thesis, Nanjing Agricultural University, Nanjing, China. [In Chinese with English abstract]

  • McIntosh R, Dubcovsky J, Rogers W, Morris C, Xia X (2017) Catalogue of gene symbols for wheat: 2017 supplement. In: KOMUGI wheat genetic resource database. https://wheat.pw.usda.gov/GG3/Wheat_Gene_Catalog_Documents

  • Mo Y, Vanzetti L, Hale I, Spagnolo E, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J (2018) Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet 131:2021–2035. https://doi.org/10.1007/s00122-018-3130-6

  • Oliver R, Cai X, Xu S, Chen X, Stack R (2005) Wheat alien species derivatives: a novel source of resistance to Fusarium head blight in wheat. Crop Sci 45:1353–1360. https://doi.org/10.2135/cropsci2004.0503

    Article  Google Scholar 

  • Pang Y, Liu C, Wang D, St. Amand P, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, Li A, Wang H, Kong L, Bai G, Liu S (2020) High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol Plant 13(9):1311-1327. https://doi.org/10.1016/j.molp.2020.07.008

  • Price A, Patterson N, Plenge R, Weinblatt M, Shadick N, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet 38:904–909. https://doi.org/10.1038/ng1847

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Wang S, Chen P, Liu D, Gill B (1998) Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theor Appl Genet 97:1042–1046. https://doi.org/10.1007/s001220050989

  • Rasheed A, Jin H, Xiao Y, Zhang Y, Hao Y, Zhang Y, Hickey L, Morgounov A, Xia X, He Z (2019) Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. J Cereal Sci 85:305–309. https://doi.org/10.1016/j.jcs.2018.12.004

    Article  CAS  Google Scholar 

  • Ren Z, Li Z, Shi L, Wang X, Zhu L, Li X, Liu D (2018) Molecular identification of wheat leaf rust resistance genes in sixty Chinese wheat cultivars. Czech J Genet Plant Breeding 54:1–8. https://doi.org/10.17221/6/2016-cjgpb

    Article  CAS  Google Scholar 

  • Talini RF, Brandolini A, Miculan M, Brunazzi A, Vaccino P, Pe ME, Dell’Acqua M (2020) Genome-wide association study of agronomic and quality traits in a world collection of the wild wheat relative Triticum urartu. Plant J 102:555–568. https://doi.org/10.1111/tpj.14650

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Bie T, Chen Q, Cao A, Chen P (2007) Development and application of molecular markers specific to chromosome 6VS of Haynaldia villosa. Acta Agron Sin 33:1595–1600. [In Chinese with English abstract]

  • Wang C, Zhang Y, Han D, Kang Z, Li G, Cao A, Chen P (2008) SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159:359–366. https://doi.org/10.1007/s10681-007-9524-1

  • Wang C, Ma Q, Qi Z, Zhuang L, Feng J, Jiang D, Hu L, Qi X, Niu J, Feng Y, Chen P (2009) Effects of wheat—Haynaldia Villosa T6VS·6AL translocation on grain and flour quality of wheat. Journal of Triticeae Crops 29:787–792. [In Chinese with English abstract]

  • Wang D, Du P, Pei Z, Zhuang L, Qi Z (2017a) Development and application of high resolution karyotypes of wheat “Chinese spring” aneuploids. Acta Agron Sin 43(11):1575-1587 https://doi.org/10.3724/sp.J.1006.2017.01575. [In Chinese with English abstract]

  • Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y, Lu P, Wu Q, Li M, Zhang D, Guo G, Zhang Y, Liu D, Zou S, Tang J, Zhao H, Wang X, Li J, Yang W, Cao T, Yin G, Liu Z (2017b) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201. https://doi.org/10.1007/s00122-017-2950-0

  • Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J, Huang S, Sela H, Distelfeld A, Huang L, Han D, Kang Z (2018b) SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet 131:1481–1496. https://doi.org/10.1007/s00122-018-3092-8

  • Wu N, Li M, Sun H, Cao Z, Liu P, Ding T, Xu H, Chu C, Zhuang L, Qi Z (2018a) RNA-seq facilitates development of chromosome-specific markers and transfer of rye chromatin to wheat. Mol Breeding 38(1):6. https://doi.org/10.1007/s11032-017-0762-1

  • Xiang J, Yang X, Li X, Liu W, Gao A, Li L, Ma X (2013) The analysis of HMW-GS evolution in mentana and its derivatives. J Plant Genetic Resour 14:1053–1058. [In Chinese with English abstract]

  • Xiao Y, Yin G, Li H, Xia X, Yan J, Zheng T, Ji W, He Z (2011) Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin 44:3919–3929. https://doi.org/10.3864/j.issn.0578-1752.2011.19.001. [In Chinese with English abstract]

  • Xiao Y, Yan J, He Z, Zhang Y, Zhang X, Liu L, Li T, Qu Y, Xia X (2006) Effect of 1BL / 1RS translocation on yield traits and powdery mildew resistance in common wheat and QTL analysis. Crop J 32:1636–1641. https://doi.org/10.3321/j.issn:0496-3490.2006.11.007

    Article  CAS  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiatova M, Vrana J, Bartos J, Dolezel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878. https://doi.org/10.1016/j.molp.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Cai J, Wang B, Qi Z, Dai T, Cao W, Jiang D (2011) Relationship between T6VS·6AL chromosome translocation and accumulations of high molecular weight glutenin subunits and glutenin macropolymer in wheat grain. Acta Agron Sin 37:2059–−2065. https://doi.org/10.3724/SP.J.1006.2011.02059

    Article  CAS  Google Scholar 

  • Xu X, Li X (2012) Research progress of founder parents in wheat. J Henan Agric Sci 41:5–8. https://doi.org/10.15933/j.cnki.1004-3268.2012.02.016

    Article  Google Scholar 

  • Xu X, Li X, Li X, Yang X, Liu W, Gao A, Li L (2010) Inheritance of 1BL/1RS of founder parent Lovrin 10 in its progeny. J Triticeae Crops 30:221–226. https://doi.org/10.1080/00949651003724790

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100(10):6263–6268. https://doi.org/10.1073/pnas.0937399100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Xiao J, Tian J (2012) Genetic dissection of milestone parent Aimengniu and its derivatives. Sci Agric Sin 45:199–207. https://doi.org/10.3864/j.issn.0578-1752.2012.02.001

    Article  CAS  Google Scholar 

  • Yu M, Liu Z, Yang B, Chen H, Zhang H, Hou D (2020) The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci Rep 10(1):12261. https://doi.org/10.1038/s41598-020-69138-0

  • Zhang H, Xie J, Cheng Y, Liu X, Wang Y, Yan S, Yang Z, Zhao H, Wang X, Jia L, Cao T, Liu Z (2017) Mapping stripe rust resistance gene YrZM103 in wheat cultivar Zhengmai 103 by BSR-seq. Acta Agron Sin 43:1643–1649. https://doi.org/10.3724/SP.J.1006.2017.01643

    Article  Google Scholar 

  • Zhang R, Wang X, Chen P (2012) Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of Haynaldia villosa. Genome 55:639–646. https://doi.org/10.1139/g2012-051

  • Zhao R, Jiang Z, Chen T, Wang L, Ji Y, Hu Z, He H, Bie T (2019) Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL. Plant Breed 138:503–512. https://doi.org/10.1111/pbr.12711

    Article  CAS  Google Scholar 

  • Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R, Liu Y, Qi P, Chen G, Jiang Q, Wei Y, Luo MC, Nevo E, Allaby RG, Liu D, Wang J, Dvorak J, Zheng Y (2018) Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnol J 16:280–291. https://doi.org/10.1111/pbi.12770

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Ji Y, Ji J, Bie T, Gao A, He H (2018) Fine physical bin mapping of the powdery mildew resistance gene Pm21 based on chromosomal structural variations in wheat. Int J Mol Sci 19:643. https://doi.org/10.3390/ijms19020643

  • Zhuang Q (2003) Chinese wheat improvement and pedigree analysis. China Agric Press, Beijing (in Chinese)

    Google Scholar 

  • Zou S, Wang H, Li Y, Kong Z, Tang D (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytologist 218:298–309. https://doi.org/10.1111/nph.14964

Download references

Acknowledgements

We thank Prof. B. S. Gill, Department of Plant Pathology, Kansas State University, USA, for kind review and editing of the English, and Mr. Yang Yang, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, China for kind help in data analysis.

Funding

This project was supported by Postgraduate Research & Practice Innovation Programs of Jiangsu Province KYCX18_0652 and SJCX19_0117, Jiangsu Key Research Program for Modern Agriculture (BE2018350), and Jiangsu Agricultural Science and Technology Innovation fund (CX(19)1001). Bioinformatics analyses were supported by the Bioinformatics Center of Nanjing Agricultural University, China.

Author information

Authors and Affiliations

Authors

Contributions

Project design: ZQ, PC, XY, and TB; Experimental work: NW, YL, DP, HW, XL, JF, JG, JZ, JG, AL, and BZ; Data analysis: NW, YL, DP, HW, JZ, JG, AL, ZQ, XY, and TB; Writing manuscript: NW, YL, DP, HW, ZQ, XY, and TB. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Zengjun Qi, Xueming Yang or Tongde Bie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1

Wheat accessions used in this study. (XLSX 21.4 kb)

Table S2

92R series and their derived cultivars (lines) used in production and breeding. (DOCX 19 kb)

Table S3

Number of wheat cultivars/lines with different polymorphic chromosome blocks in the three groups of wheat. (XLSX 42 kb)

Table S4

The CPIC data of total wheat and the three groups. (XLSX 14 kb)

Fig. S1

PCR analysis of 6 VS specific markers XCINAU 272 (a) and XCINAU 275 (b) analysis in DA6V, del6VL, and 21 wheat accessions M: DL2000; 1: Chinese Spring; 2: Dasypyrum villosum; 3: Durum wheat-D. villosum amphiploid; 4: DA6V; 5: DSdel6VL(6A); 6–7: X249-X250; 8–10: X252-X254; 11–16: X258-X263; 17: X265; 18–20: X268-X270; 21: X275; 22–24:X277-X279; 25–26: X286-X287; Arrows indicate specific loci of 6VS chromosome. (PNG 2738 kb)

High resolution image (TIF 18542 kb)

Fig. S2

Karyotypes of 32 92R series derivatives after ONMP FISH. (PNG 1760 kb)

High resolution image (TIF 7417 kb)

Fig. S3

Karyotypes of 24 newly developed wheat lines from regional yield trials of the winter wheat zone in MLYRV after ONMP FISH. (PNG 1753 kb)

High resolution image (TIF 7523 kb)

Fig. S4

Karyotypes of 29 newly developed wheat lines from regional yield trials of the winter wheat zone in SHRV after ONMP FISH. (PNG 3219 kb)

High resolution image (TIF 12702 kb)

Fig. S5

Karyotypes of 32 newly developed wheat lines from preliminary yield trials of the winter wheat zone in MLYRV after ONMP FISH. (PNG 2050 kb)

High resolution image (TIF 9051 kb)

Fig. S6

Karyotypes of 38 newly developed wheat lines from preliminary yield trials of the winter wheat zone in SHRV after ONMP FISH. (PNG 2485 kb)

High resolution image (TIF 10414 kb)

Fig. S7

Karyotypes of 44 newly developed wheat lines from regional yield trials of the winter wheat zone in northern Yellow-Huai River Valleys after ONMP FISH. (PNG 2382 kb)

High resolution image (TIF 9668 kb)

Fig. S8

Karyotypes of 66 cultivars/lines from Shandong, Shanxi, Hebei, and Henan Provinces in northern China after ONMP FISH. (PNG 5243 kb)

High resolution image (TIF 16522 kb)

Fig. S9

Polymorphic chromosome blocks and their frequencies occurred in 271 wheat cutivars/lines. The chromosome type numbers in yellow were newly identified in this study, the number in white was based on Huang et al. (2018). (PNG 763 kb)

High resolution image (TIF 7189 kb)

Fig. S10

The mean CPIC of A-genome, B-genome, D-genome, and total chromosomes for three group wheat cultivars/lines. (PNG 173 kb)

High resolution image (TIF 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Lei, Y., Pei, D. et al. Predominant wheat-alien chromosome translocations in newly developed wheat of China. Mol Breeding 41, 30 (2021). https://doi.org/10.1007/s11032-021-01206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01206-3

Keywords

Navigation