Skip to main content
Log in

Development of intron targeted amplified polymorphic markers of metal homeostasis genes for monitoring their introgression from Aegilops species to wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The identification of transfers of useful alien genes for metal homeostasis from non-progenitor Aegilops species using the widely available anchored wheat SSR markers is difficult due to their lower polymorphism with the distant related wild species and the lack of locus specificity further restricts their application. The present study deals with the development of intron targeted amplified polymorphic (ITAP) markers for the metal homeostasis genes present on chromosomes of groups 2 and 7 of Triticeae. The mRNA sequences of 27 metal homeostasis genes were retrieved from different plant species using NCBI database and their BLASTn was performed against the wheat draft genome sequences in Ensemblplants to get exonic and intronic sequences of the corresponding metal homeostasis genes in wheat. The ITAP primers were developed in such a way that they would anneal to the conserved flanking exonic regions of the genes and amplify across highly variable introns within the PCR limits. The primers led to the amplification of variable intronic sequences of genes with polymorphism between non-progenitor Aegilops species and the recipient wheat cultivars. Further, the polymorphic ITAP markers were used to characterize the transfers of metal homeostasis genes from the non-progenitor Aegilops species to the BC2F5 wheat-Aegilops derivatives, developed through induced homoeologous pairing. The derivatives with significant percent increase in grain Fe and Zn content over the elite cultivar PBW343 LrP showed the introgression of some of the useful Aegilops alleles of the metal homeostasis genes. The use of different metal homeostasis genes using this approach is the first report of the direct contribution of the genes for increasing the grain micronutrient content for developing biofortified wheat lines with reduced linkage drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph I-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127(3):377–382

    Article  CAS  Google Scholar 

  • Baum M, Lagudah ES, Appels R (1992) Wide crosses in cereals. Ann Rev Plant Biol 43(1):117–143

    Article  Google Scholar 

  • Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breed 125(5):529–531

    Article  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166(3):1463–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp W, McIntosh R, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91(1):59–87

    Article  Google Scholar 

  • Friebe B, Qi L, Nasuda S, Zhang P, Tuleen N, Gill BS (2000) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101(1):51–58

    Article  Google Scholar 

  • Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112(3):430–439

    Article  CAS  PubMed  Google Scholar 

  • Hawkin JD (1988) A survey on intron and exon lengths. Nucleic Acids Res 16(21):9893–9908

    Article  Google Scholar 

  • Hunt JR (2002) Moving toward a plant-based diet: are iron and zinc at risk? Nutr Rev 60(5):127–134

    Article  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443):91–95

    Article  CAS  PubMed  Google Scholar 

  • Jorhem L, Engman J (2000) Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL1 collaborative study. J AOAC Int 83(5):1189–1203

    CAS  PubMed  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581(12):2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) Rare variant alleles in the light of the neutral theory. Mol Biol Evol 1(1):84–93

    CAS  PubMed  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150(1):257–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacadena JR (1967) Introduction of allien variation into wheat by gene recombination. I. Crosses between mono V (5B) Triticum aestivum L. and Secale cereale L. and Aegilops columnaris zhuk. Euphytica 16(2):221–230

    Article  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496(7443):87–90

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ (1997) Further manipulation by centric misdivision of the 1RS. 1BL translocation in wheat. Euphytica 94(3):257–261

    Article  Google Scholar 

  • Lukaszewski A, Lapinski B, Rybka K (2005) Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res 109(1–3):373–377

    Article  CAS  PubMed  Google Scholar 

  • Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG (2005) EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48(5):811–822

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neelam K, Rawat N, Tiwari VK, Kumar S, Chhuneja P, Singh K, Randhawa GS, Dhaliwal HS (2011) Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Mol Breed 28(4):623–634

    Article  CAS  Google Scholar 

  • Okamoto M (1957) Asynaptic effect of chromosome V. Wheat Inf Serv 5:6

    Google Scholar 

  • Pearce S, Tabbita F, Cantu D, Buffalo V, Avni R, Vazquez-Gross H, Zhao R, Conley CJ, Distelfeld A, Dubcovksy J (2014) Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol 14(1):368

    Article  PubMed  PubMed Central  Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res 15(1):3–19

    Article  CAS  Google Scholar 

  • Rawat N, Neelam K, Tiwari VK, Randhawa GS, Friebe B, Gill BS, Dhaliwal HS (2011) Development and molecular characterization of wheat–Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 54(11):943–953

    Article  CAS  PubMed  Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49(3):91–98

    Article  Google Scholar 

  • Riley R, Chapman V, Kimber G (1959) Genetic control of chromosome pairing in intergeneric hybrids with wheat. Nature 183(4670):1244–1246

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sears E (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–21

    Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19(4):585–593

    Article  Google Scholar 

  • Sharma P, Sheikh I, Singh D, Kumar S, Verma SK, Kumar R, Vyas P, Dhaliwal HS (2017) Uptake, distribution, and remobilization of iron and zinc among various tissues of wheat–Aegilops substitution lines at different growth stages. Acta Physiol Plant 39(8):185

    Article  Google Scholar 

  • Sheikh I, Sharma P, Verma SK, Kumar S, Malik S, Mathpal P, Kumar U, Singh D, Kumar S, Chugh V, Dhaliwal HS (2016) Characterization of interspecific hybrids of Triticum aestivum x Aegilops sp. without 5B chromosome for induced homoeologous pairing. J Plant Biochem Biotechnol 25(1):117–120

    Article  Google Scholar 

  • Tiong J, McDonald GK, Genc Y, Pedas P, Hayes JE, Toubia J, Langridge P, Huang CY (2014) HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol 201(1):131–143

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered 100:771–776

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121(2):259–269

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15(1):273

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma SK, Kumar S, Sheikh I, Malik S, Mathpal P, Chugh V, Kumar S, Prasad R, Dhaliwal HS (2016a) Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. Int J Radiat Biol 92(3):132–139

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Kumar S, Sheikh I, Sharma P, Mathpal P, Malik S, Kundu P, Awasthi A, Kumar S, Prasad R, Dhaliwal HS (2016b) Induced homoeologous pairing for transfer of useful variability for high grain Fe and Zn from Aegilops kotschyi into wheat. Plant Mol Biol Report 34(6):1083–1094

    Article  CAS  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180(4):562–574

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Fu Y, Arora R (2005) Intron-flanking EST–PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111(7):1347–1356

    Article  CAS  PubMed  Google Scholar 

  • Weining S, Langridge P (1991) Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet 82(2):209–216

    Article  CAS  PubMed  Google Scholar 

  • Xiong F, Liu J, Zhong R, Jiang J, Han Z, He L, Li Z, Tang X, Tang R (2013) Intron targeted amplified polymorphism (ITAP), a new sequence related amplified polymorphism-based technique for generating molecular markers in higher plant species. Plant Omics J 6(2):128

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology, Government of India for Grant (BT/AGR/Wheat Bioforti/PH-II/2010) through a network project “Biofortification of wheat for micronutrients through conventional and molecular approaches—phase-II”. The authors also acknowledge the Akal College of Agriculture for providing infrastructural facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harcharan Singh Dhaliwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, I., Sharma, P., Verma, S.K. et al. Development of intron targeted amplified polymorphic markers of metal homeostasis genes for monitoring their introgression from Aegilops species to wheat. Mol Breeding 38, 47 (2018). https://doi.org/10.1007/s11032-018-0809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0809-y

Keywords

Navigation