Skip to main content
Log in

The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Glutathione (GSH) plays a pivotal role in heavy metal detoxification. Ethylene is one of the important plant hormones, which plays a critical role in triggering plant responses to different stresses such as cadmium (Cd) stress. Ethylene responsive transcription factor (ERF) belongs to one of the largest plant transcription factor families. ERF is known to be induced by ethylene and thus regulate multiple stress responses through the activation of stress-related genes. Until now, little has been done to explore the relationship among the accumulation of endogenous ethylene, ERF transcript levels and the GSH content in plants under Cd treatment and we will investigate these link. In this study, the gene transcript level of LchERF, LchGSH1 (gene responsible for the first-step GSH biosynthesis) and LchGSHS (gene responsible for the second-step GSH biosynthesis), endogenous ethylene accumulation, GSH content and Cd concentration in Lycium chinense with or without Cd stress treatment were studied. Furthermore, the transgenic tobacco expressing 35S::LchERF which grown under Cd stress condition was also investigated in this study. Our results showed that endogenous ethylene, LchERF, LchGSH1 and LchGSHS gene expression and GSH content can be induced by Cd treatment in L. chinense, however, reduced by co-treatment with 2-aminoethoxyvinlglycine (AVG), an inhibitor of ethylene biosynthesis. The transgenic tobacco expressing 35S::LchERF showed greater tolerance to Cd stress than non-transgenic plants. The expression of NtGSH1 and NtGSHS genes was increased in transgenic tobacco plants compared with non-transgenic plants, indicating that LchERF is associated with the expression level of GSH synthesis related genes in tobacco. Evidence was presented here that under Cd stress, GSH accumulation occurred at least partially via enhanced LchERF gene expression and the ethylene signal transduction pathways might be involved in this accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324. doi:10.1016/j.envexpbot.2011.07.002

    CAS  Google Scholar 

  • Asano N, Kato A, Miyauchi M, Kizu H, Tomimori T, Matsui K, Nash RJ, Molyneux RJ (1997) Specific α-galactosidase inhibitors, N-methylcalystegines structure/activity relationships of calystegines from Lycium chinense. Eur J Biochem 248(2):296–303. doi:10.1111/j.1432-1033.1997.00296.x

    Article  CAS  PubMed  Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Pöschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci 106(19):8067–8072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan KX, Wirtz M, Phua SY, Estavillo GM, Pogson BJ (2013) Balancing metabolites in drought: the sulfur assimilation conundrum. Trends Plant Sci 18(1):18–29. doi:10.1016/j.tplants.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J, Lefèvre I, Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170(18):1585–1594

    Article  PubMed  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18(2):92–99

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832. doi:10.1104/pp.123.3.825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Knecht JA, van Dillen M, Koevoets PL, Schat H, Verkleij JA, Ernst WH (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation). Plant Physiol 104(1):255–261

    PubMed Central  PubMed  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, di Toppi LS, Schiavo FL (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150(1):217–228

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong JZ, Wang Y, Wang SH, Yin LP, Xu GJ, Zheng C, Lei C, Zhang MZ (2013) Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J Sci Food Agric 93(2):310–315. doi:10.1002/jsfa.5758

    Article  CAS  PubMed  Google Scholar 

  • Flocco CG, Lindblom SD, Elizabeth A, Smits P (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytorem 6(4):289–304

    Article  CAS  Google Scholar 

  • Guan C, Ji J, Guan W, Feng Y, Li X, Jin C, Li J, Wang Y, Wang G (2014a) A Lycium chinense-derived P5CS-like gene is regulated by water deficit-induced endogenous abscisic acid and overexpression of this gene enhances tolerance to water deficit stress in Arabidopsis. Mol Breed 34(3):1109–1124. doi:10.1007/s11032-014-0103-6

    Article  CAS  Google Scholar 

  • Guan C, Liu X, Song X, Wang G, Ji J, Jin C (2014b) Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Mol Breed 33(3):657–667. doi:10.1007/s11032-013-9982-1

    Article  CAS  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7(4):465–471

    Article  CAS  PubMed  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273(41):26857–26861

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Hönicke P, Wirtz M, Hell R, Rennenberg H, Kopriva S (2004) Regulation of sulphate assimilation by glutathione in poplars (Populus tremula × P. alba) of wild type and overexpressing γ-glutamylcysteine synthetase in the cytosol. J Exp Bot 55(398):837–845

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M-L, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88(11):1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Horsch R, Fry J, Hoffmann N, Eichholtz D, Sa Rogers, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Iakimova E, Kapchina-Toteva V, de Jong A, Atanassov A, Woltering E (2005) Involvement of ethylene, oxidative stress and lipid-derived signals in cadmium-induced programmed cell death in tomato suspension cells. BMC Plant Biol 5(Suppl 1):S19

    Article  PubMed Central  Google Scholar 

  • Iqbal N, Masood A, Khan MIR, Asgher M, Fatma M, Khan NA (2013) Cross-talk between sulfur assimilation and ethylene signaling in plants. Plant Signal Behav 8:1–9

    Article  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Király L, Künstler A, Höller K, Fattinger M, Juhász C, Müller M, Gullner G, Zechmann B (2012) Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response. Plant Physiol Biochem 59:44–54. doi:10.1016/j.plaphy.2011.10.020

    Article  PubMed Central  PubMed  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Hong J-P, Oh S-K, Lee S, Choi D, Kim W (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55(1):61–81

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li X, Zhou A (2007) Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur Polym J 43(2):488–497

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60(12):3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Shen L, Sheng J (2008) Improvement in cadmium tolerance of tomato seedlings with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase. J Plant Nutr 31(5):809–827

    Article  CAS  Google Scholar 

  • Lu C, Shao Y, Li L, Chen A, Xu W, Wu K, Luo Y, Zhu B (2011) Overexpression of SlERF1 tomato gene encoding an ERF-type transcription activator enhances salt tolerance. Russ J Plant Physiol 58(1):118–125

    Article  CAS  Google Scholar 

  • Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS ONE 8(7):e68503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masood A, Iqbal N, Khan MIR, Khan NA (2012a) The coordinated role of ethylene and glucose in sulfur-mediated protection of photosynthetic inhibition by cadmium. Plant Signal Behav 7(11):1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012b) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell Environ 35(3):524–533

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14(5):554–562

    Article  PubMed Central  PubMed  Google Scholar 

  • Meng X, Xu J, He Y, Yang K-Y, Mordorski B, Liu Y, Zhang S (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25(3):1126–1142. doi:10.1105/tpc.112.109074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35(2):454–484

    Article  CAS  Google Scholar 

  • Park JM, Park C-J, Lee S-B, Ham B-K, Shin R, Paek K-H (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5):1035–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Luis A, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150(1):229–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12(4):468–479

    Article  CAS  PubMed  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130. doi:10.1016/S0098-8472(98)00058-6

    Article  Google Scholar 

  • Sanità di Toppi L, Lambardi M, Pazzagli L, Cappugi G, Durante M, Gabbrielli R (1998) Response to cadmium in carrot in vitro plants and cell suspension cultures. Plant Sci 137(2):119–129

    Article  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten H-M, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH (2013) SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25(6):2115–2131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129(3):519–528

    Article  CAS  Google Scholar 

  • Shan X, Yan J, Xie D (2012) Comparison of phytohormone signaling mechanisms. Curr Opin Plant Biol 15(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad M (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35(4):985–999

    Article  CAS  Google Scholar 

  • Tang M, Sun J, Liu Y, Chen F, Shen S (2007) Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol 63(3):419–428

    Article  CAS  PubMed  Google Scholar 

  • Wawrzyński A, Kopera E, Wawrzyńska A, Kamińska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57(10):2173–2182. doi:10.1093/jxb/erj176

    Article  PubMed  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2 + -hypertolerant facultative metallophyte Arabidopsis halleri. Plant, Cell Environ 29(5):950–963

    Article  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 55(1):125–132

    Article  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang X-C, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148(4):1953–1963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu D, Ji J, Wang G, Guan C, Jin C (2014) LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep 12:2033–2045. doi:10.1007/s00299-014-1678-4

    Article  Google Scholar 

  • Yoshida S, Tamaoki M, Ioki M, Ogawa D, Sato Y, Aono M, Kubo A, Saji S, Saji H, Satoh S (2009) Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiol Plant 136(3):284–298

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forman HJ (2012) Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol 23:722–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang R, Ah Kang K, Piao MJ, Kim KC, Kim AD, Chae S, Park JS, Youn UJ, Hyun JW (2010) Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity. J Ethnopharmacol 130(2):299–306

    Article  PubMed  Google Scholar 

  • Zhang B, Shang S, Jabeen Z, Zhang G (2014) Involvement of ethylene in alleviation of Cd toxicity by NaCl in tobacco plants. Ecotoxicol Environ Saf 101:64–69

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Zheng Z, Xu X, Hu Z (2010) Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. Biochem Syst Ecol 38(3):275–284. doi:10.1016/j.bse.2010.01.008

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119(1):73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31401391), Tianjin Research Program of Application Foundation and Advanced Technology (No.15JCQNJC14700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Ji or Gang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, C., Ji, J., Wu, D. et al. The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Mol Breeding 35, 123 (2015). https://doi.org/10.1007/s11032-015-0313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0313-6

Keywords

Navigation