Skip to main content
Log in

Quantitative trait loci for resistance to Maize rayado fino virus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Maize rayado fino virus (MRFV) causes one of the most important virus diseases of maize in regions of Mexico, Central and South America, where it causes moderate to severe yield losses. The virus is found from the southern USA to northern Argentina where its vector, the maize leafhopper Dalbulus maidis, is present. Although resistance to MRFV has been identified in tropical maize lines, little was known about genes or quantitative trait locus (QTL) conferring resistance to MRFV. In order to identify the location of genes conferring resistance to MRFV, two recombinant inbred line mapping populations that segregated for MRFV resistance were inoculated using viruliferous leafhoppers, and their responses to virus inoculation were evaluated under greenhouse conditions 7, 14 and 21 days post inoculation. A QTL explaining up to 23 % of the total phenotypic variance was mapped on chromosome 10 in both populations, with similar genetic and physical positions identified in the two populations. The magnitude of the QTL effect and the validation in two independent populations suggests that resistance to MFRV could be transferred into elite breeding lines to develop resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUDPC:

Area under the disease progress curve

BLUPS:

Best linear unbiased predictors

CIM:

Composite interval mapping

CSS:

Corn stunt spiroplasma

dpi:

Days post inoculation

IAP:

Inoculation access period

MSBP:

Maize bushy stunt phytoplasma

MRFV:

Maize rayado fino virus

NAM:

Nested association mapping

QTL:

Quantitative trait locus/loci

RIL:

Recombinant inbred lines

SNP:

Single nucleotide polymorphism

References

  • Balzarini M, Milligan S (2003) Best Linear Unbiased Prediction (BLUP) for Genotype Performance. In: Kang MS (ed) Handbook of Formulas and Software for Plant Geneticists and Breeders. Haworth Press Inc, New York, pp 181–191

    Google Scholar 

  • Bradfute OE, Nault LR, Gordon DT, Robertson DC, Toler RW, Boothroyd CW (1980) Identification of Maize rayado fino virus in the United States. Plant Dis 64:50–53

    Article  Google Scholar 

  • Bustamante PI, Hammond R, Ramirez P (1998) Evaluation of maize germplasm for resistance to Maize rayado fino virus. Plant Dis 82:50–56

    Article  Google Scholar 

  • Chicas M, Caviedes M, Hammond R, Madriz K, Albertazzi F, Villalobos H, Ramirez P (2007) Partial characterization of Maize rayado fino virus isolates from Ecuador: phylogenetic analysis supports a Central American origin of the virus. Virus Res 126:268–276

    Article  PubMed  CAS  Google Scholar 

  • Cournoyer P, Dinesh-Kumar SP (2011) NB-LRR Receptors in Plant Virus Defense. In: Caranta MAAC, Tepfer M, Lopez-Moya JJ (eds) Recent Advances in Plant Virology. Caister Academic Press, Norfolk, pp 149–176

    Google Scholar 

  • Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17:493–499

    Article  PubMed  CAS  Google Scholar 

  • Gamez R (1969) A new leafhopper-borne virus of corn in Central America. Plant Disease Reporter 53:929–932

    Google Scholar 

  • Gomez P, Rodriguez-Hernandez AM, Moury B, Aranda MA (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol 125:1–22

    Article  Google Scholar 

  • Hammond RW, Ramirez P (2001) Molecular characterization of the genome of Maize rayado fino virus, the type member of the genus Marafivirus. Virology 282:338–347

    Article  PubMed  CAS  Google Scholar 

  • Jones MW, Redinbaugh MG, Anderson RJ, Louie R (2004) Identification of quantitative trait loci controlling resistance to Maize chlorotic dwarf virus. Theor Appl Genet 110:48–57

    Article  PubMed  CAS  Google Scholar 

  • Jones M, Boyd E, Redinbaugh M (2011) Responses of maize (Zea mays L.) near isogenic lines carrying Wsm1, Wsm2, and Wsm3 to three viruses in the Potyviridae. Theor Appl Genet 123:729–740

    Article  PubMed  CAS  Google Scholar 

  • Kogel R, Hammond RW, Ramirez P (1996) Incidence and geographic distribution of maize rayado fino virus (MRFV) in Latin America. Plant Dis 80:679–683

    Article  Google Scholar 

  • Leon P, Gamez R (1981) Some physicochemical properties of Maize rayado fino virus. J Gen Virol 56:67–75

    Article  CAS  Google Scholar 

  • Louie R, Jones MW, Anderson RJ, Redinbaugh MG (2002) Registration of maize germplasm Oh1VI. Crop Sci 42:991

    Article  Google Scholar 

  • Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group Phureja. PLoS ONE 7

  • Madden LV, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. APS Press, St Paul

    Google Scholar 

  • McMullen MD, Simcox KD (1995) Genomic organization of disease and insect resistance genes in maize. Mol Plant Microbe Interact 8:811–815

    Article  CAS  Google Scholar 

  • McMullen MD, Louie R, Simcox KD, Jones MW (1994) Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Mol Plant Microbe Interact 7:708–712

    Article  CAS  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Nault LR, Gingery RE, Gordon DT (1980) Leafhopper transmission and host range of Maize rayado fino virus. Phytopathology 70:709–712

    Article  Google Scholar 

  • Ramirez Rojas S, Romero Rosales F, Dan J, Martinez Garza A, Mejia Andrade H (1988) Reacción de ocho variedades de maíz al virus del rayado fino en Chapingo, México. Agric Tec Mexico 24:11–18

    Google Scholar 

  • Redinbaugh MG, Jones MW, Gingery RE (2004) The genetics of virus resistance in maize (Zea mays L.). Maydica 49:183–190

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Silveira FT, Moro JR, da Silva HP, de Oliveira JA, Perecin D (2008) Inheritance of the resistance to corn stunt. Pesquisa Agropecuaria Brasileira 43:1717–1723

    Article  Google Scholar 

  • Stewart LR, Haque MA, Jones MW, Redinbaugh MG (2013) Response of maize (Zea mays L.) lines carrying Wsm1, Wsm2, and Wsm3 to the potyviruses Johnsongrass mosaic virus and Sorghum mosaic virus. Mol Breed 31:289–297

    Article  CAS  Google Scholar 

  • Toler RW, Skinner G, Bockholt AJ, Harris KF (1985) Reactions of maize (Zea mays) accessions to Maize rayado fino virus. Plant Dis 69:56–57

    Article  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2001) JoinMap 3.0. Plant Research Int., The Netherlands

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0. Version 4.0. Plant Research Int., The Netherlands

  • Vandeplas A (2003) Evaluation of sixty highland elite maize genotypes for resistance to Maize rayado fino virus. The Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  • Vasquez J, Mora E (2007) Incidence of and yield loss caused by maize rayado fino virus in maize cultivars in Ecuador. Euphytica 153:339–342

    Article  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yu JM, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Zambrano JL, Francis DM, Redinbaugh MG (2013) Identification of resistance to Maize rayado fino virus in maize inbred lines. Plant Dis 97:1418–1423

    Article  Google Scholar 

  • Zambrano JL, Jones M, Brenner E, Francis DM, Tomas A, Redinbaugh MG (2014) Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line. Theor Appl Genet 127:867–880

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. McMullen (USDA-ARS, Columbia, MO) for providing seeds of the Ki11 × B73 RIL population. We are grateful to J. Todd (USDA-ARS, OARDC) for maintaining the D. maidis colony. We also thank the Dupont Pioneer Marker Laboratory for the genotyping of the Oh1VI × Oh28 RIL population with the Illumina plex. JLZ thanks the Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Ecuador for a fellowship to support his Ph.D. study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret G. Redinbaugh.

Additional information

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambrano, J.L., Jones, M.W., Francis, D.M. et al. Quantitative trait loci for resistance to Maize rayado fino virus . Mol Breeding 34, 989–996 (2014). https://doi.org/10.1007/s11032-014-0091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0091-6

Keywords

Navigation