Skip to main content
Log in

Development of an efficient method for assessing resistance to the net type of net blotch (Pyrenophora teres f. teres) in winter barley and mapping of quantitative trait loci for resistance

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Breeding for resistance against Pyrenophora teres f. teres in barley is difficult due to the high virulence diversity of the pathogen and the fact that in field trials a simultaneous infection with Rhynchosporium commune, Puccinia hordei or Blumeria graminis f. sp. hordei often takes place. To avoid this, a so-called “summer hill trial” was developed in which winter barley is sown at the beginning of August at optimum conditions for P. teres infection. These trials allowed an unequivocal scoring of P. teres resistance. Using this approach, strong correlations of the results obtained in 3 years at two locations were observed and heritability was estimated at h 2 = 0.80 for the doubled haploid (DH) population Uschi × HHOR3073 and h 2 = 0.62 for (Post × Viresa) × HHOR9484. In parallel, genetic maps based on DArT, SSR and SNP markers were constructed, comprising 705.7 cM for the DH population Uschi × HHOR3073 and 1,035.8 cM for (Post × Viresa) × HHOR9484. In the population Uschi × HHOR3073, one quantitative trait locus (QTL) was detected on each of chromosomes 2H and 3H and two on chromosome 5H, explaining between 9.4 and 19.0 % of the phenotypic variance. In the population (Post × Viresa) × HHOR9484, three QTL were detected on chromosome 5H and one on chromosome 7H, explaining between 12.6 and 34.7 % of the phenotypic variance. These results show that the new summer hill trial design is best suited to obtain reliable phenotypic data for P. teres resistance under field conditions, as on the one hand already known QTL were confirmed and on the other hand new QTL were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afanasenko OS, Hartleb H, Guseva NN, Minarikova V, Janosheva M (1995) A set of differentials to characterize populations of Pyrenophora teres Drechs. for international use. J Phytopathol 143:501–507. doi:10.1111/j.1439-0434.1995.tb04562.x

    Article  Google Scholar 

  • Afanasenko OS, Makarova IG, Zubkovich AA (1999) The number of genes controlling resistance to Pyrenophora teres Drechs. strains in barley. Russ J Genet 35:274–283

    CAS  Google Scholar 

  • Afanasenko O, Mironenko N, Filatova O, Kopahnke D, Krämer I, Ordon F (2007) Genetics of host-pathogen interactions in the Pyrenophora teres t. teres (net form) – barley (Hordeum vulgare) pathosystem. Eur J Plant Pathol 117:267–280. doi:10.1007/s10658-006-9093-5

    Article  CAS  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Anonymous (2005) Beschreibende Sortenliste 2005. Getreide, Mais, Ölfrüchte, Leguminosen (großkörnig), Hackfrüchte (außer Kartoffeln). Bundessortenamt, Hannover

  • Arabi M, Al-Safadi B, Barrault G, Alertini L (1990) Inheritance of partial resistance to net blotch in barley. Plant Breed 105:150–155. doi:10.1111/j.1439-0523.1990.tb00468.x

    Article  Google Scholar 

  • Cakir M, Gupta S, Platz GJ, Ablett GA, Loughman R, Embiri LC, Poulsen D, Li CD, Lance RCM, Galwey NW, Jones MGK, Appels R (2003) Mapping and validation of the genes for resistance to Pyrenophora teres f. teres in barley (Hordeum vulgare L.). Aust J Agric Res 54:1369–1377. doi:10.1071/AR02229

    Article  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582. doi:10.1186/1471-2164-10-582

    Article  PubMed  Google Scholar 

  • Comadran J, Kilian B, Russell J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392. doi:1038/ng.2447

    Article  PubMed  CAS  Google Scholar 

  • Dahleen LS, Morgan W, Mittal S, Bregitzer P, Brown RH, Hill NS (2012) Quantitative trait loci (QTL) for Fusarium Elisa compared to QTL for Fusarium head blight resistance and deoxynivalenol content in barley. Plant Breed 131:237–243. doi:10.1111/j.1439-0523.2012.01952.x

    Article  CAS  Google Scholar 

  • Douglas GB, Gordon LL (1985) Quantitative genetics of net blotch in barley. N Z J Agric Res 28:147–155

    Google Scholar 

  • Falk DE, Reinbergs E, Chhina BS, Mather DE (1996) Hill plots for yield evaluation in a doubled haploid recurrent selection program in barley (Hordeum vulgare L.). Can J Plant Sci 76:757–761

    Article  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Grewal TS, Rossnagel BG, Pozniak CJ, Scoles GJ (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529–539. doi:10.1007/s00122-007-0688-9

    Article  PubMed  CAS  Google Scholar 

  • Grewal TS, Rossnagel BG, Scoles GJ (2010) Molecular markers associated with agronomically important traits were proposed for marker-assisted selection (MAS) to aid in developing improved cultivars. Crop Sci 50:177–184. doi:10.2135/cropsci2009.01.0011

    Article  Google Scholar 

  • Grewal TS, Rossnagel BG, Scoles GJ (2012) Mapping quantitative trait loci associated with spot blotch and net blotch resistance in a doubled-haploid barley population. Mol Breed 30:267–279. doi:10.1007/s11032-011-9616-4

    Article  CAS  Google Scholar 

  • Gupta S, Loughman R (2001) Current virulence of Pyrenophora teres on barley in Western Australia. Plant Dis 85:960–966. doi:10.1094/PDIS.2001.85.9.960

    Article  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, Germán S, Fletcher S, Park RF, Singh D, Pereyra S, Franckowiak J (2011) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123:55–68. doi:10.1007/s00122-011-1566-z

    Article  PubMed  CAS  Google Scholar 

  • Ho KM, Tekauz A, Choo TM, Martin RA (1996) Genetic studies on net blotch resistance in a barley cross. Can J Plant Sci 76:715–719

    Article  Google Scholar 

  • Hysing SC, Hsam SLK, Singh RP et al (2007) Agronomic performance and multiple disease resistance in T2BS.2RL wheat-rye translocation lines. Crop Sci 47:254–260. doi:10.2135/cropsci2006.04.0269

    Article  Google Scholar 

  • International Barley Genome Sequencing Consortium (IBGS) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–718. doi:10.1038/nature11543

    Google Scholar 

  • Kavak H (2004) Effects of different sowing times on leaf scald and yield components of spring barley under dryland conditions. Aust J Agric Res 55:147–153. doi:10.1071/AR020580004-9409/04/020147

    Article  Google Scholar 

  • König J, Kopahnke D, Steffenson BJ, Przulj N, Romeis T, Roeder MS, Ordon F, Perovic D (2012) Genetic mapping of a leaf rust resistance gene in former Yugoslavian barley landrace MBR1012. Mol Breed 30:1253–1264. doi:10.1007/s11032-012-9712-0

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kota R, Varshney RK, Prasad M, Zhang H, Stein N, Graner A (2008) EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct Integr Genomics 8:223–233. doi:10.1007/s10142-007-0060-9

    Article  PubMed  CAS  Google Scholar 

  • Lehmensiek A, Platz GJ, Mace E, Poulsen D, Sutherland MW (2007) Mapping of adult plant resistance to net form of net blotch in three Australian barley populations. Aust J Agric Res 58:1191–1197. doi:10.1071/AR07141

    Article  Google Scholar 

  • Ma ZQ, Lapitan NLV, Steffenson B (2004) QTL mapping of net blotch resistance genes in a doubled-haploid population of six-rowed barley. Euphytica 137:291–296. doi:10.1023/B:EUPH.0000040441.36990.58

    Article  CAS  Google Scholar 

  • Mackay I, Powell W (2006) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63. doi:10.1016/j.tplants.2006.12.001

    Article  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334. doi:10.1007/s004380000326

    Article  PubMed  CAS  Google Scholar 

  • Masterbroek HD, Vandenbos J, Balkemaboomstra AG (1988) Infection by powdery mildew, Erysiphe-graminis f.-sp. Hordei, in small hill-plots of spring barley varieties at different levels of allo-infection. Cereal Res Commun 16:223–229

    Google Scholar 

  • Mathre DE (1997) Compendium of barley disease, 2nd edn. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Feldner M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263. doi:10.1105/tpc.110.082537

    Article  PubMed  CAS  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566. doi:10.1094/PHYTO-05-11-0157

    Article  PubMed  Google Scholar 

  • Moll E, Walther U, Flath K, Prochnow J, Sachs E (1996) Methodische Anleitung zur Bewertung der partiellen Resistenz und die SAS-Anwendung RESI. Berichte a d Biol Bundesanst f Land- und Forstwirtschaft H 12:60

  • Moll E, Flath K, Piepho HP (2000) Die Prüfung von Pflanzen auf ihre Wiederstandsfähigkeit gegen Schadorganismen in der Biologischen Bundesanstalt (Teil3). Mitt a d Biol Bundesanst f Land- und Forstwirtschaft H 374:11–12

    Google Scholar 

  • Murray GM, Brennan JP (2010) Estimating disease losses to the Australian barley industry. Aust Plant Pathol 39:85–96. doi:10.1071/AP09064

    Article  Google Scholar 

  • Ordon F, Habekuss A, Kastirr U, Rabenstein F, Kühne T (2009) Virus resistance in cereals: sources of resistance, genetics and breeding. J Phythopathology 157:535–545. doi:10.1111/j.1439-0434.2009.01540.x

    Article  Google Scholar 

  • Perovic J, Silvar C, Koenig J, Stein N, Perovic D, Ordon F (2013) A versatile fluorescence-based multiplexing assay for CAPS genotyping on capillary electrophoresis systems. Mol Breed. doi:10.1007/s11032-013-9852-x

    Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S et al (2000) A simple sequence repeat-based linkage map of barley. Genet 156:1997–2005

    CAS  Google Scholar 

  • Riedel C, Habekuss A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123:69–76. doi:10.1007/s00122-011-1567-y

    Article  PubMed  CAS  Google Scholar 

  • Robinson J, Jalli M (1996) Diversity among Finnish net blotch isolates and resistance in barley. Euphytica 92:81–87. doi:10.1007/BF00022832

    Article  Google Scholar 

  • Robinson J, Jalli M (1997) Quantitative resistance to Pyrenophora teres in six Nordic spring barley accessions. Euphytica 94:201–208. doi:10.1023/A:1002996722383

    Article  Google Scholar 

  • Scheurer KS, Friedt W, Huth W, Waugh R, Ordon F (2001) QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theor Appl Genet 103:1074–1083. doi:10.1007/s001220100632

    Article  CAS  Google Scholar 

  • Schweizer P, Stein N (2011) Large-scale data integration reveals colocalization of gene functional groups with Meta-QTL for multiple disease resistance in barley. Mol Plant Microbe Interact 24:1492–1501. doi:10.1094/MPMI-05-11-0107

    Article  PubMed  CAS  Google Scholar 

  • Silvar C, Casas AM, Igartua E, Ponce-Molina LJ, Gracia MP, Schweizer G, Herz M, Flath K, Waugh R, Kopahnke D, Ordon F (2011) Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theor Appl Genet 123:1019–1028. doi:10.1007/s00122-011-1644-2

    Article  PubMed  CAS  Google Scholar 

  • Silvar C, Perovic D, Scholz U, Casas AM, Igartua E, Ordon F (2012) Fine mapping and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace. Theor Appl Genet 124:49–62. doi:10.1007/s00122-011-1686-5

    Article  PubMed  Google Scholar 

  • Steffenson BJ, Webster RK (1992) Pathotype diversity of Pyrenophora teres f. teres on barley. Phytopathology 82:170–177. doi:10.1094/Phyto-82-170

    Article  Google Scholar 

  • Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558

    Article  CAS  Google Scholar 

  • Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356. doi:10.1046/j.1439-0523.2001.00615.x

    Article  CAS  Google Scholar 

  • Tekauz A (1990) Characterisation and distribution of pathogenic variation in Pyrenophora teres f. teres and Pyrenophora teres f. maculata from western Canadian. Can J Plant Pathol 12:141–148

    Article  Google Scholar 

  • Van Ooijen JW (2004) Map QTL 5: software for the mapping of quantitative trait loci in experimental population. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) Join Map®4.0 software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  PubMed  CAS  Google Scholar 

  • Wagner C, Schweizer G, Krämer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex quantitative barley—Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113–122. doi:10.1007/s00122-008-0881-5

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920. doi:1073/pnas.0401076101

    Article  PubMed  CAS  Google Scholar 

  • Wu HL, Steffenson BJ, Li Y, Oleson AE, Zhong S (2003) Genetic variation for virulence and RFLP markers in Pyrenophora teres. Can J Plant Pathol 25:82–90

    Article  CAS  Google Scholar 

  • Xi K, Bos C, Turkington TK, Xue AG, Burnett PA, Juskiw PE (2008) Interaction of net blotch and scald on barley. Can J Plant Pathol 30:329–334

    Article  Google Scholar 

  • Xue G, Burnett PA, Helm J (1994) Severity of, and resistance of barley varieties to, scald and net blotch in Central Alberta. Can Plant Dis Surv 74:13–17

    Google Scholar 

  • Zaffarano PL, McDonald BA, Linde CC (2011) Two new species of Rhynchosporium. Mycologia 103:195–202. doi:10.3852/10-119

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Innovation Programme of the Federal Ministry for Nutrition, Agriculture and Consumer Protection (BMELV, PGI-06.01-28-1-43.031-07) for financial support and Ms. D. Günzke for excellent technical assistance. In addition, we thank Michael Koch (Deutsche Saatveredelung) and Dr. Laszlo Cselenyi (W. von Borries-Eckendorf) for conducting field trials and Dr. Jens Weyen (Saaten-Union Biotec) for providing DH lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. König.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 357 kb)

Supplementary material 2 (XLS 366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, J., Perovic, D., Kopahnke, D. et al. Development of an efficient method for assessing resistance to the net type of net blotch (Pyrenophora teres f. teres) in winter barley and mapping of quantitative trait loci for resistance. Mol Breeding 32, 641–650 (2013). https://doi.org/10.1007/s11032-013-9897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9897-x

Keywords

Navigation