Skip to main content
Log in

Identification of quantitative trait loci for cane splitting in red raspberry (Rubus idaeus)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Cane splitting, a normal feature of raspberry growth, can lead to plant infestation by cane midge followed by fungal infection, with losses in yield of up to 50 % if left untreated. The extent of splitting in the Latham × Glen Moy reference mapping population was assessed over six years and in three environments and quantitative trait loci (QTL) were identified across linkage groups (LG) 2, 3, 5 and 6. Cane splitting QTL on LG 3 and 5 co-locate with QTL for plant vigour. The cane splitting QTL on LG 6 is associated with the QTL for resistance to root rot caused by Phytophthora rubi. Broad-sense heritability for cane splitting ranged from 25.6 % in 2007 to 49.1 % in 2008 in this population. Season and environment were also found to influence cane splitting in this population. Several genes involved in general plant growth and in defence responses lie within these QTL. This is a first step towards identifying the genetic basis of cane splitting in raspberry and the development of genetic markers for use in raspberry breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

PRR:

Phytophthora root rot

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Antonin P, Mittaz C, Terrettaz R, Antonin P, Mittaz C, Terrettaz R (1998) Raspberry cane midge Resseliella theobaldi (Barnes) II. Towards a control strategy. Revue Suisse de Viticulture, d’Arboriculture et d’Horticulture 30:389–393

    Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    Article  PubMed  CAS  Google Scholar 

  • Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA, Chagné D, Buck EJ, Gardiner SE (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet. doi:10.1007/s00122-012-1835-5

  • Chen YC, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 6:107–124

    Google Scholar 

  • Cheung M, Zeng N, Tong S, Li F, Zhao K, Zhang Q, Sun S, Lam H (2007) Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot 58:4147–4159

    Article  PubMed  CAS  Google Scholar 

  • Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284

    Article  PubMed  CAS  Google Scholar 

  • Cominelli E, Tonelli C (2009) A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Res 19:1231–1232

    Article  PubMed  Google Scholar 

  • Elo A, Immanen J, Nieminen K, Helariutta Y (2009) Stem cell function during plant vascular development. Semin Cell Dev Biol 20:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S (2010) Regulation of two germin-like protein genes during plum fruit development. J Exp Bot 61:1761–1770

    Article  PubMed  CAS  Google Scholar 

  • Gabor V, Fail J, Penzes B (2006) Susceptibility of raspberry cultivars to the raspberry cane midge (Resseliella theobaldi Barnes). J Fruit Ornam Plant Res 14:61–66

    Google Scholar 

  • Godfrey D, Able AJ, Dry IB (2007) Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? Mol Plant Microbe Interact 20:1112–1125

    Article  PubMed  CAS  Google Scholar 

  • Graham J, McNicol RJ (1995) An examination of the ability of RAPD markers to determine the relationships within and between Rubus species. Theor Appl Genet 90:1128–1132

    Article  CAS  Google Scholar 

  • Graham J, Marshall B, Squire GR (2003) Genetic differentiation over a spatial environmental gradient in wild Rubus idaeus populations. New Phytol 157:667–675

    Article  Google Scholar 

  • Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett CA, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749

    Article  PubMed  CAS  Google Scholar 

  • Graham J, Smith K, Tierney I, MacKenzie K, Hackett CA (2006) Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botrytis and spur blight, rust and cane spot. Theor Appl Genet 112:818–831

    Article  PubMed  CAS  Google Scholar 

  • Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009) Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Graham J, Hackett CA, Smith K, Woodhead M, MacKenzie K, Tierney I, Cooke D, Bayer M (2011) Towards an understanding of the nature of resistance to Phytophthora root rot in red raspberry: is it mainly root vigour? Theor Appl Genet. doi:10.1007/s00122-011-1609-5

  • Hall DR, Farman DI, Cross JV, Pope TW, Ando T, Yamamoto M (2009) (S)-2-acetoxy-5-undecanone, female sex pheromone of the raspberry cane midge, Resseliella theobaldi (Barnes. J Chem Ecol 35:230–242

    Article  PubMed  CAS  Google Scholar 

  • Hall D, Shepherd T, Fountain M, Vétek G, Birch N, Jorna C, Farman D, Cross J (2010) Investigation of attraction of raspberry cane midge, Resseliella theobaldi, to volatiles from wounded raspberry primocanes. http://www.iobc-wprs.org/events/20100920_IOBC_soft_fruits_2010_book_of_abstracts.pdf. Accessed 11 Jan 2011

  • Jennings DL (1988) Raspberries and blackberries: their breeding, disease and growth. Academic Press Ltd, London

    Google Scholar 

  • Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale B (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165:1489–1506

    PubMed  CAS  Google Scholar 

  • Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett C, Graham J (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of QTL. Mol Nutr Food Res 53:625–634

    Article  PubMed  CAS  Google Scholar 

  • Kirst M, Myburg AA, De León JPG, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative triat locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 135:2368–2378

    Article  PubMed  CAS  Google Scholar 

  • Ko J, Han K, Park S, Yang J (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135:1069–1083

    Article  PubMed  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Lole M (2009) Pest, disease and weed incidence report—harvest year 2008. ADAS http://www.docstoc.com/docs/22624943/PEST-DISEASE-AND-WEED-INCIDENCE-REPORT-HARVEST-YEAR-2008. Accessed 16 Dec 2010

  • Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol 140:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • McCallum S, Woodhead M, Hackett CA, Kassim A, Paterson A, Graham J (2010) Genetic and environmental effects influencing fruit color and QTL analysis in raspberry. Theor Appl Genet 121:611–627

    Article  PubMed  CAS  Google Scholar 

  • McNicol RJ, Williamson B, Jennings DL, Woodford JAT (1983) Resistance to raspberry cane midge (Ressellia theobaldi) and its association with wound periderm in Rubus crataegifolius and its red raspberry derivatives. Ann Appl Biol 103:489–495

    Article  Google Scholar 

  • Minorsky PV (2006) On the inside. Plant Physiol 140:791–792

    Article  CAS  Google Scholar 

  • Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714

    Article  PubMed  CAS  Google Scholar 

  • Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  PubMed  CAS  Google Scholar 

  • Perricone (2009) RRE1: an Arabidopsis E3 ligase involved in plant defense. http://bama.ua.edu/~joshua/archive/may09/Perricone.pdf. Accessed 28 March 2011

  • Reichmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Racliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G-L (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  Google Scholar 

  • Robertson GW, Griffiths DW, Woodford JAT, Birch ANE (1995) Changes in the chemical composition of volatiles released by flowers and fruits of the red raspberry (Rubus idaeus) cultivar Glen Prosen. Phytochemistry 38:1175–1179

    Article  CAS  Google Scholar 

  • Schuurink RC, Haring MA, Clark DG (2006) Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends Plant Sci 11:20–25

    Article  PubMed  CAS  Google Scholar 

  • Seemuller E (1987) Resistance behaviour and cultivation characteristics of various raspberry cultivars. Obstbau 12:356–359

    Google Scholar 

  • Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63:811–822

    Article  PubMed  CAS  Google Scholar 

  • Shepherd T, Birch N, Jorna C, Mitchell C, Cross J, Hall D, Farman D (2009) Profiling of raspberry wound volatiles using a combination of SPME and GC-TOF-MS. Metabomeeting Norwich UK. Abstracts P. 111. http://www.scri.ac.uk/webfm_send/769. Accessed 24 March 2011

  • Sønsteby A, Myrheim U, Heiberg N, Heide OM (2009) Production of high yielding red raspberry long canes in a Northern climate. Sci Hort 121:289–297

    Article  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  PubMed  CAS  Google Scholar 

  • Woodhead M, McCallum S, Smith K, Cardle L, Mazzitelli L, Graham J (2008) Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol Breed 22:555–563

    Article  CAS  Google Scholar 

  • Woodhead M, Weir A, Smith K, McCallum S, MacKenzie K, Graham J (2010) Functional markers for red raspberry. J Am Soc Hort Sci 135:418–427

    Google Scholar 

Download references

Acknowledgments

We thank Clare Booth and Louise Donnelly at the James Hutton Institute (JHI) Sequencing and Genotyping Service and Joanne Russell, Luke Ramsay (JHI) and Janet Allen of ADAS for helpful comments. This work is funded by the Scottish Government Rural and Environment Research and Analysis Directorate (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Woodhead.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

11032_2012_9775_MOESM2_ESM.bmp

Supplementary Fig. 1 Correlation between raspberry cane height and cane splitting in 2005 in the Latham × Glen Moy raspberry reference mapping population (BMP 224 kb)

11032_2012_9775_MOESM3_ESM.bmp

Supplementary Fig. 2 Plot of the first principal coordinate scores calculated from the cane splitting (2005–2008) and root rot scores (2005–2006) from the 188 progeny from the Latham × Glen Moy raspberry reference mapping population. High principal coordinate scores correspond to high cane splitting or root rot scores (BMP 224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodhead, M., Williamson, S., Smith, K. et al. Identification of quantitative trait loci for cane splitting in red raspberry (Rubus idaeus). Mol Breeding 31, 111–122 (2013). https://doi.org/10.1007/s11032-012-9775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9775-y

Keywords

Navigation