Skip to main content
Log in

Genotyping selection for resistance against tomato yellow leaf curl virus (TYLCV) conferred by Ty-1 and Ty-3 genes in tomato

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The tomato yellow leaf curl virus (TYLCV), transmitted by whitefly, causes major disease losses to tomato crops in tropical and subtropical regions of the world. Several genes conferring resistance to TYLCV, mainly Ty-1 and Ty-3 genes, have been introgressed to cultivated tomato (Solanum lycopersicum) from the wild relative species Solanum chilense. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), several AFLP markers closely linked to Ty-1 and Ty-3 genes were identified from the resistant breeding line TZ841-4. Cloning and sequencing of the selected AFLP fragments allowed us to develop codominant cleaved amplified polymorphic sequence and dominant sequence characterized amplified region markers closely linked to Ty-1. In addition, Ty-3-linked allelic-specific markers have been discriminated by a quantitative real-time PCR protocol. Taken together, these markers constitute useful tools for marker-assisted selection breeding programs to improve genetic resistance to TYLCV, and also to initiate map-based cloning approaches to isolate the resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato yellow leaf curl virus (TYLCV) resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119(3):519–530

    Article  PubMed  Google Scholar 

  • Banerjee MK, Kalloo G (1987) Inheritance of tomato leaf curl virus resistance in Lycopersicon hirsutum f. glabratum. Euphytica 36:581–584

    Article  Google Scholar 

  • Brugmans B, van der Hulst RGM, Visser RGF, Lindhout P, van Eck HJ (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res 31(10):e55

    Article  PubMed  Google Scholar 

  • Costa HS, Brown JK, Sivasupramaniam S, Bird J (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the A-and B-biotypes of Bemisia tabaci. Insect Sci Appl 14:255–266

    Google Scholar 

  • Czosnek, H (ed) (2007) Tomato yellow leaf curl virus disease: Management, molecular biology, breeding for resistance. Springer, Berlin

  • Feng Y, Wu Q, Wang S, Chang X, Xie W, Xu B, Zhang Y (2010) Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66(3):313–318

    Article  PubMed  CAS  Google Scholar 

  • Fernández E, Grávalos C, Haro PJ, Cifuentes D, Bielza P (2009) Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. Pest Manag Sci 65(8):885–891

    Article  PubMed  Google Scholar 

  • Ferreira ID, do Rosario VE, Cravo PVL (2006) Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malar J 5:1. doi:10.1186/1475-2875-5-1

    Article  PubMed  Google Scholar 

  • Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:225–240

    Google Scholar 

  • Garcia BE, Mejia L, Melgar S, Teni R, Sánchez-Pérez A, Barillas AC, Montes L, Keuler NS, Salus MS, Havey MJ, Maxwell DP (2008) Effectiveness of the Ty-3 introgression for conferring resistance in F3 families of tomato to bipartite begomoviruses in Guatemala. Tomato Genet Coop Rep 58:22–28

    Google Scholar 

  • García-Cano E, Resende RO, Boiteux LS, Giordano LB, Fernández-Muñoz R, Moriones E (2008) Phenotypic expression, stability, and inheritance of a recessive resistance to monopartite begomoviruses associated with tomato yellow leaf curl disease in tomato. Phytopathology 98:618–627

    Article  PubMed  Google Scholar 

  • Giordano LB, Silva-Lobo VL, Santana FM, Fonseca MEN, Boiteux LS (2005) Inheritance of resistance to the bipartite Tomato chlorotic mottle begomovirus derived from Lycopersicon esculentum cv. ‘Tyking’. Euphytica 143:27–33

    Article  Google Scholar 

  • Haanstra JPV, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley SD, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 15:15–20

    Google Scholar 

  • Hanson P, Green SK, Kuo G (2006) Ty2, a gene in chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18

    Google Scholar 

  • Hassan AA, Abdel-Ati KEA (1999) Genetics of tomato yellow leaf curl virus tolerance derived from Lycopersicon pimpinellifolium and Lycopersicon pennellii. Egypt J Hort 26:323–338

    Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284

    Article  CAS  Google Scholar 

  • Ji Y, Salus MS, Van Betteray B, Smeets J, Jensen KS, Martin CT, Mejia L, Scott JW, Havey MJ, Maxwell DP (2007b) Co-dominant SCAR markers for detection of the Ty-3 and Ty-3a loci form Solanum chilense at 25 cM of Chromosome 6 of tomato. Tomato Genet Coop Rep 57:25–28

    Google Scholar 

  • Ji Y, Scott JW, Schuster DJ (2009) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hort Sci 134(2):281–288

    Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    Article  PubMed  CAS  Google Scholar 

  • Kalloo G, Banerjee MK (1990) Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed 105:156–159

    Article  Google Scholar 

  • Kasrawi MA (1989) Inheritance of resistance to tomato yellow leaf curl virus (TYLCV) in Lycopersicon pimpinellifolium. Plant Dis 73:435–437

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lapidot M, Ben-Joseph R, Cohen L, Machbash Z, Levy D (2006) Development of a scale for evaluation of Tomato yellow leaf curl virus resistance level in tomato plants. Phytopathology 96:1404–1408

    Article  PubMed  CAS  Google Scholar 

  • Laterrot H (1992) Resistance genitors to Tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl Newsl 1:2–4

    Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang S, Cheng P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Meksem K, Ruben E, Hyten DL, Schmidt ME, Lightfoot DA (2001) High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance gene Rhg4 by using Taqman probes. Mol Breed 77:63–71

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Monci F, Sánchez-Campos S, Navas-Castillo J, Moriones E (2002) A natural recombinant between the Geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 302:317–326

    Article  Google Scholar 

  • Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    Article  PubMed  CAS  Google Scholar 

  • Navas-Castillo J, Sanchez-Campos S, Diaz JA, Saez-Alonso E, Moriones E (1999) Tomato yellow leaf curl virus-is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis 83:29–32

    Article  Google Scholar 

  • Omer AD, Tabashnik BE, Johnson MW, Costa HS, Ullman DE (1993) Sweetpotato whitefly resistance to insecticides in Hawaii: intra-island variation is related to insecticide use. Entomol Exp Appl 67:173–182

    Article  CAS  Google Scholar 

  • Perez de Castro A, Blanca JM, Diez MJ, Nuez Viñals F (2007) Identification of a CAPS marker tightly linked to the tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Eur J Plant Pathol 117:347–356

    Article  Google Scholar 

  • Pico B, Diez MJ, Nuez F (1996) Viral diseases causing the greatest economic losses to the tomato crop. 2. The tomato yellow leaf curl virus—a review. Sci Hort 67:151–196

    Article  Google Scholar 

  • Pico B, Ferriol M, Díez MJ, Nuez F (1999) Developing tomato breed lines resistant to Tomato Yellow Leaf Curl Virus. Plant Breed 118(6):537–542

    Article  Google Scholar 

  • Pilowsky M, Cohen S (1974) Inheritance of resistance to tomato yellow leaf curl virus in tomatoes. Phytopathology 64:632–635

    Article  Google Scholar 

  • Pilowsky M, Cohen S (2000) Screening additional wild tomatoes for resistance to the whitefly-borne Tomato yellow leaf curl virus. Acta Physiol Plant 22:351–353

    Article  Google Scholar 

  • Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, Bell SM, Combaret V, Puisieux A, Mighell AJ, Robinson PA, Inglehearn CF, Isaacs JD, Markham AF (2003) Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3:18

    Article  PubMed  Google Scholar 

  • Qu LJ, Foote TN, Roberts MA, Money TA, Aragón-Alcaide L, Snape JW, Moore G (1998) A simple PCR-based method for scoring the ph1b deletion in wheat. Theor Appl Genet 96:371–375

    Article  CAS  Google Scholar 

  • Rick CM, Forbes JA (1974) Association of an allozyme with nematode resistance. Tomato Genet Coop Rep 24:25

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schuster DJ, Mann RS, Toapanta M, Cordero R, Thompson S, Cyman S, Shurtleff A, Morris RF (2010) Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag Sci 66(2):186–195

    PubMed  CAS  Google Scholar 

  • Scott JW (2007) Breed for resistance to viral pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops. Science Publisher, Inc., Enfield, pp 447–474

    Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23(6):1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. B.V. Kyazma, Wageningen

    Google Scholar 

  • Vandemark GJ, Miklas PN (2002) A fluorescent PCR assay for the codominant interpretation of a dominant SCAR marker linked to the virus resistance gene bc-1 2 in common bean. Mol Breed 10:193–201

    Article  CAS  Google Scholar 

  • Vandemark GJ, Miklas PN (2005) Genotyping common bean for the potyvirus resistance alleles I and bc-1 2 with a multiplex real-time PCR assay. Phytopathology 95:499–505

    Article  PubMed  CAS  Google Scholar 

  • Vandemark GJ, Fourie D, Miklas PN (2008) Genotyping with real-time PCR reveals recessive epistasis between independent QTL conferring resistance to common bacterial blight in dry bean. Theor Appl Genet 117:513–522

    Article  PubMed  CAS  Google Scholar 

  • Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Risser RGF, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanumchilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Vidavsky F, Czosnek H (1998) Tomato breed lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88:910–914

    Article  PubMed  CAS  Google Scholar 

  • Vidavsky F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:625–631

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Williamson VM, Colwell G (1991) Acid phosphatase-1 from nematode resistant tomato: isolation and characterization of its gene. Plant Physiol 97:131–146

    Article  Google Scholar 

  • Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87:757–763

    Article  CAS  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Vanoss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88:141–146

    Article  CAS  Google Scholar 

  • Zhang LP, Khan A, Niño-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of the resistance gene analogs based on a Lycopersicon esculentum × Lycopersicon hirsutum cross. Genome 45:133–146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fernando J. Yuste-Lisbona for critical reading of the manuscript and Eduardo R. Bejarano for providing the infectious clone of TYLCV-IL. This work was supported by grants from Ministerio de Ciencia e Innovación (AGL2007-66062-C02-01 and 05-0004) and Junta de Andalucía (IDEA 130278D). We also thank Campus de Excelencia Internacional Agroalimentario, CeiA3 for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Lozano.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Cabezuelo, J.M., Capel, J., Abad, J. et al. Genotyping selection for resistance against tomato yellow leaf curl virus (TYLCV) conferred by Ty-1 and Ty-3 genes in tomato. Mol Breeding 30, 1131–1142 (2012). https://doi.org/10.1007/s11032-012-9701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9701-3

Keywords

Navigation