Skip to main content
Log in

Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTL) mapping provides a powerful tool for unraveling the genetic basis of yield and yield components as well as heterosis in upland cotton. In this research, a molecular linkage map of Xiangzamian 2 (Gossypium hirsutum L.)-derived recombinant inbred lines (RILs) was reconstructed based on increased expressed sequence tag–simple sequence repeat markers. Both the RILs and immortalized F2s (IF2) developed through intermating between RILs were grown under multiple environments. Yield and yield components including seed-cotton yield, lint yield, bolls/plant, boll weight, lint percentage, seed index, lint index and fruit branch number were measured and their QTL were repeatedly identified across environments by the composite interval mapping (CIM) method. From a total of 111 non-redundant QTL, 23 were detected in both two populations. In the meantime, multi-marker joint analyses showed that 16 of these QTL had significant environmental interaction. QTL for correlated traits tended to be collocated and most of the QTL for seed-cotton yield and lint yield were associated with QTL for at least one yield component, consistent with the results observed in correlation analyses. For many QTL with significant additive effects, positive alleles from CRI12, the inferior parent with lower yield performance, were associated with trait improvement. Trait performance of IF2s and the large number of QTL with positive dominant effects implied that dominance plays an important role in the genetic basis of heterosis in Xiangzamian 2 and that non-additive inheritance is also an important genetic mode for lint percentage in the population. These QTL can provide the bases for marker-assisted breeding programs of upland cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait locus/loci

RIL:

Recombinant inbred line

IF2:

Immortalized F2

SSR:

Simple sequence repeat

EST:

Expressed sequence tag

AFLP:

Amplified fragment length polymorphism

RAPD:

Random amplified polymorphic DNA

SRAP:

Sequence-related amplified polymorphism

MAB:

Marker-assisted breeding

References

  • Basten CJ, Weir BS, Zeng ZB (2001) QTL cartographer, version 1.15. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Article  CAS  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte T, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Guo WZ, Fang D, Yu WD, Zhang TZ (2005) Sequence divergence of microsatellites and phylogeny analysis in tetraploid cotton species and their putative diploid ancestors. J Integ Plant Biol 47(12):1418–1430

    Article  CAS  Google Scholar 

  • Guo WZ, Ma GJ, Zhu YC, Yi CX, Zhang TZ (2006) Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in Upland cotton. J Integ Plant Biol 48(3):320–326

    Article  CAS  Google Scholar 

  • Guo WZ, Cai CP, Wang CB, Han ZG, Song XL, Wang K, Niu XW, Wang C, Lu KY, Shi B, Zhang TZ (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176(1):527–541

    Article  PubMed  CAS  Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Feng CD, Stewart JMcD (2005) Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144:141–149

    Article  CAS  Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197

    Article  CAS  Google Scholar 

  • Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    PubMed  CAS  Google Scholar 

  • Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Zhang QF (2003) Single-locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100(5):2574–2579

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of Upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140

    CAS  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  Google Scholar 

  • Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 2001(158):1755–1771

    Google Scholar 

  • McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13

    Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  PubMed  CAS  Google Scholar 

  • Meredith WR (1984) Quantitative genetics. In: Kohel RJ, Lewis CF (eds) Cotton. Agronomy Society of America, Madison, WI, pp 131–150

    Google Scholar 

  • Meredith WR (1990) Yield and fiber quality potential for second-generation cotton hybrids. Crop Sci 30:1045–1048

    Article  Google Scholar 

  • Michalak P (2008) Coexpression, coregulation and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 91:243–248

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127

    Article  CAS  Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    PubMed  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Guo W, Zhang Y-M, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894

    Article  PubMed  Google Scholar 

  • Qin YS, Liu RZ, Mei HX, Zhang TZ, Guo WZ (2009) Mapping for Yield Traits in Upland Cotton (Gossypium hirsutum L.). Acta Agron Sin 35(10):1812–1821

    Article  CAS  Google Scholar 

  • Ren LH, Guo WZ, Zhang TZ (2002) Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Bot Sin 44(7):815–820

    CAS  Google Scholar 

  • Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH (2001) Genomic dissection of genotype × environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11:1988–1995

    Article  PubMed  CAS  Google Scholar 

  • Shappley ZW, Jenkins JN, Meredith WR, McCarty JC Jr (1998) An RFLP linkage map of Upland cotton, Gossypium hirsutum L. Theor Appl Genet 97:756–761

    Article  CAS  Google Scholar 

  • Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15:169–181

    Article  CAS  Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Stelly DM (1993) Interfacing cytogenetics with the cotton genome mapping effort. In: Proceedings of the Beltwide cotton improvement conference, National Cotton Council of America, Memphis, pp 1545–1550

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(22):1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Ulloa M, Meredith WR Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170

    CAS  Google Scholar 

  • Ulloa M, Saha S, Jenkin N, Meredith WR, McCarty JC, Stelly DM (2005) Chromosomal assignment of RFLP linkage groups harboring important QTL on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Hered 96:132–144

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2006) MapChart 2.2: software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Wang BH, Guo WZ, Zhu XF, Wu YT, Huang NT, Zhang TZ (2006) QTL mapping of fiber quality in an elite hybrid derived-RIL population of Upland cotton. Euphytica 152:367–378

    Article  CAS  Google Scholar 

  • Wang BH, Guo WZ, Zhu XF, Wu YT, Huang NT, Zhang TZ (2007a) QTL mapping of yield and yield components for elite hybrid derived-RILs in Upland cotton. J Genet Genomics 34(1):35–45

    Article  PubMed  Google Scholar 

  • Wang BH, Wu YT, Guo WZ, Zhu XF, Huang NT, Zhang TZ (2007b) QTL analysis and epistasis effects dissection of fiber qualities in an elite cotton hybrid grown in second-generation. Crop Sci 47:1384–1392

    Article  CAS  Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot 79(1):1291–1310

    Article  Google Scholar 

  • Wu YT, Yin JM, Guo WZ, Zhu XF, Zhang TZ (2004) Heterosis performance of yield and fiber quality in F1 and F2 hybrids in Upland cotton. Plant Breed 123:285–289

    Article  Google Scholar 

  • Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton. Euphytica 165:231–245

    Article  Google Scholar 

  • Xiao J, Li J, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    PubMed  CAS  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  PubMed  CAS  Google Scholar 

  • Zhang YM, Xu S (2005) A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity 95:96–104

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in Upland cotton (Gossypium hirsutum L.). Euphytica 144:91–99

    Article  CAS  Google Scholar 

  • Zhang ZS, Hu MC, Zhang J, Liu DJ, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Yuqiang Li in the Hunan Cotton Research Institute for kindly providing breeder-owned parental seeds of XZM2. This work was financially supported in part by the National Basic Research Program of China (2011CB109300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhen Zhang.

Additional information

Renzhong Liu and Baohua Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Wang, B., Guo, W. et al. Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Mol Breeding 29, 297–311 (2012). https://doi.org/10.1007/s11032-011-9547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9547-0

Keywords

Navigation