Skip to main content
Log in

Origin and evolution of the waxy phenotype in Amaranthus hypochondriacus: evidence from the genetic diversity in the Waxy locus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The existence of polymorphism in the Waxy locus in a large gene pool of 53 strains with various waxy phenotypes from samples of Amaranthus hypochondriacus collected from different regions was investigated in an origin-and-evolution study. First, we screened all strains for a mutation point (G–A polymorphism in exon 6) by using PCR–RFLP and/or direct sequence analysis. The results showed that the nonsense mutation in the coding region (exon 6) of the Waxy gene was responsible for the change in perisperm starch, leading to a waxy phenotype in all strains. Second, phylogenetic analysis, which was based on the Waxy variation, indicated diverse waxy types occurring separately and independently in certain domesticated regions in Mexico. Finally, we designated nine molecular types by comparing obvious structural variations in the coding region of the Waxy gene. Among the molecular types, A. hypochondriacus contained Type III in three subtypes with the waxy phenotype, with evolutionary routes that could originate from Type II in accordance with G–A polymorphism. In addition, these types had the same mutation points by which the Waxy gene was converted into the waxy phenotype. Therefore, the present results showed that the nonsense mutation is a unique event in the evolution of waxy phenotypes in this crop. This study will provide useful information for understanding the evolutionary process of the waxy phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker R, Wheeler E, Lorenz K, Stafford A, Grosjean O, Betschart A, Saunders R (1981) A compositional study of amaranth grain. J Food Sci 46:1175–1180

    Article  CAS  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    Article  PubMed  CAS  Google Scholar 

  • Brenner D, Baltensperger D, Kulakow P, Lehmann J, Myers R, Slabbert M, Sleugh B (2000) Genetic resources and breeding of amaranthus. Plant Breed Rev 19:227–286

    CAS  Google Scholar 

  • Cai X, Wang Z, Xing Y, Zhang J, Hong M (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5’UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465

    Article  PubMed  CAS  Google Scholar 

  • Chan KF, Sun M (1997) Genetic diversity detected by isozyme and RAPD analysis of crop and wild species of amaranthus. Theor Appl Genet 95:865–873

    Article  CAS  Google Scholar 

  • Costea M, Brenner DM, Tardif FJ, Tan YF, Sun M (2006) Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: an application in germplasm identification. Genet Resour Crop Evol 53:1625–1633

    Article  Google Scholar 

  • Domon E, Saito A, Takeda K (2002) Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst 77:351–359

    Article  PubMed  CAS  Google Scholar 

  • Downton W (1973) Amaranthus edulis: A high lysine grain amaranth. World Crops 25:20

    Google Scholar 

  • Fan L, Quan L, Leng X, Guo X, Hu W, Ruan S, Ma H, Zeng M (2008) Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize. Mol Breed 22:329–338

    Article  CAS  Google Scholar 

  • Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fukunaga K, Kawase M, Kato K (2002) Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol Genet Genomics 268:214–222

    Article  PubMed  CAS  Google Scholar 

  • Hirano HY, Eiguchi M, Sano Y (1998) A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol 15:978–987

    PubMed  CAS  Google Scholar 

  • Inouchi N, Nishi K, Tanaka S, Asai M, Kawase Y, Hata Y, Konishi Y, Yue S, Fuwa H (1999) Characterization of amaranth and quinoa starches. J Appl Glycosci 46:233–240

    CAS  Google Scholar 

  • Isshiki M, Yamamoto Y, Satoh H, Shimamoto K (2001) Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol 125:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • James M, Denyer K, Myers A (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kauffman C, Weber L (1990) Grain amaranth. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 127–139

    Google Scholar 

  • Kawase M, Fukunaga K, Kato K (2005) Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Mol Genet Genomics 274:131–140

    Article  PubMed  CAS  Google Scholar 

  • Konishi Y, Nojima H, Okuno K, Asaoka M, Fuwa H (1985) Characterization of starch granules from waxy, nonwaxy, and hybrid seeds of Amaranthus hypochondriacus L. Agric Biol Chem 49:1965–1971

    Article  CAS  Google Scholar 

  • Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H, Suzuki Y, Sano Y (2008) Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet 116:979–989

    Article  PubMed  CAS  Google Scholar 

  • Morales E, Lembcke J, Graham G (1988) Nutritional value for young children of grain amaranth and maize-amaranth mixtures: effect of processing. J Nutr 118:78

    PubMed  CAS  Google Scholar 

  • Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321

    Article  PubMed  CAS  Google Scholar 

  • Okuno K, Sakaguchi S (1981) Glutinous and non-glutinous starches in perisperm of grain amaranths. Cereal Res Commun 9:305–310

    CAS  Google Scholar 

  • Okuno K, Sakaguchi S (1982) Inheritance of starch characteristics in perisperm of Amaranthus hypochondriacus. J Hered 73:467

    Google Scholar 

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    PubMed  CAS  Google Scholar 

  • Park YJ, Nemoto K, Nishikawa T, Matsushima K, Minami M, Kawase M (2009) Molecular cloning and characterization of granule bound starch synthase I cDNA from a grain amaranth (Amaranthus cruentus L.). Breed Sci 59:351–360

    Article  CAS  Google Scholar 

  • Park YJ, Nemoto K, Nishikawa T, Matsushima K, Minami M, Kawase M (2010) Waxy strains of three amaranth grains raised by different mutations in the coding region. Mol Breed 25:623–635

    Article  CAS  Google Scholar 

  • Sakamoto S (1997) Origin and ethnobotany of glutious perisperm starch found in a species of grain amaranths, Amaranthus hypochondriacus L. Intercult Stud, Ryukoku Univ 1:124–133

    Google Scholar 

  • Sauer JD (1950) The grain amaranths: a survey of their history and classification. Ann Missouri Bot Gard 37:561–619

    Article  Google Scholar 

  • Sauer JD (1967) The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann Missouri Bot Gard 54:103–137

    Article  Google Scholar 

  • Saunders R, Becker R (1984) Amaranthus: a potential food and feed resource. Adv Cereal Sci Technol 6:357–396

    CAS  Google Scholar 

  • Shukla S, Bhargava A, Chatterjee A, Srivastava A, Singh S (2006a) Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica 151:103–110

    Article  CAS  Google Scholar 

  • Shukla S, Bhargava A, Chatterjee A, Srivastava J, Singh N, Singh S (2006b) Mineral profile and variability in vegetable amaranth (Amaranthus tricolor). Plant Foods Hum Nutr 61:21–26

    Article  Google Scholar 

  • Sugimoto Y, Yamada K, Sakamoto S, Fuwa H (1981) Some properties of normal-and waxy-type starches of Amaranthus hypochondriacus L. Starch 33:112–116

    Article  CAS  Google Scholar 

  • Swofford D (1998) PAUP*: phylogenetic analysis using parsimony and other methods, version 4.0 (test ver. 61–64). Sinauer Associates Publishers, Sunderland

    Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876

    Article  PubMed  CAS  Google Scholar 

  • Tsai C (1974) The function of the waxy locus in starch synthesis in maize endosperm. Biochem Genet 11:83–96

    Article  PubMed  CAS  Google Scholar 

  • Van K, Onoda S, Kim M, Kim K, Lee S (2008) Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Mol Genet Genomics 279:255–266

    Article  PubMed  CAS  Google Scholar 

  • Vrinten P, Nakamura T, Yamamori M (1999) Molecular characterization of waxy mutations in wheat. Mol Genet Genomics 261:463–471

    Article  CAS  Google Scholar 

  • Wang Z, Zheng F, Shen G, Gao J, Snustad D, Li M, Zhang J, Hong M (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  PubMed  CAS  Google Scholar 

  • Wessler S, Varagona M (1985) Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc Natl Acad Sci USA 82:4177–4181

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Sun M (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribedspacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol Phylogenet Evol 21:372–387

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Dr. D. Brenner of USDA-ARS-MWA-PIRU; Iowa State University, USA, for providing the accessions used in this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jun Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, YJ., Nemoto, K., Nishikawa, T. et al. Origin and evolution of the waxy phenotype in Amaranthus hypochondriacus: evidence from the genetic diversity in the Waxy locus. Mol Breeding 29, 147–157 (2012). https://doi.org/10.1007/s11032-010-9533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9533-y

Keywords

Navigation