Skip to main content

Advertisement

Log in

Antidiabetic potential of thiazolidinedione derivatives with efficient design, molecular docking, structural activity relationship, and biological activity: an update review (2021–2023)

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Thiazolidinedione has been used successfully by medicinal chemists all over the world in the development of potent antidiabetic derivatives. The few compounds with excellent antidiabetic potency that we have identified in this review could be used as a lead for further research into additional antidiabetic mechanisms. The information provided in this review regarding the design, biological activity, structure–activity relationships, and docking studies may be useful for scientists who wish to further explore this scaffold in order to fully utilize its biological potential and develop antidiabetic agents that would overcome the limitations of currently available medications for the treatment of diabetes. This review outlines the antidiabetic potential of Thiazolidinedione-based derivatives that have been published in the year 2021- till date.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ALT:

Alanine Transaminase

AST:

Aspartate Transaminase

ADMET:

Absorption, Distribution, Metabolism, Excretion and Toxicity

ALR:

Aldose reductase

DPP-4:

Dipeptidyl peptidase-4

D.B:

Direct Bilirubin

DEN:

Diethylnitrosamine

ELISA:

Enzyme-linked immunosorbent assay

GSH:

Glutathione

GA-MLR:

Genetic Algorithm Multiple Linear Regression

HSA:

Human Serum albumin

IC50:

Half-maximal inhibitory concentration

IR:

Infrared Spectroscopy

I.D.B:

Indirect Bilirubin

LDL:

Low density lipoproteins

LFT:

Liver Function test

LDH:

Lactate Dehydrogenase

MM-GBSA:

Molecular Mechanics-Generalized Born Surface area

MDA:

Malondialdehyde

NMR:

Nuclear Magnetic Resonance Spectroscopy

OGTT:

Oral Glucose tolerance test

PPAR-γ :

Peroxisome proliferator Activated receptors

PTP-1B:

Protein tyrosine phosphatase 1B

PDB:

Protein Database

QSAR:

Quantitative Structure Activity Relationship

RSG:

Rosiglitazone

SPR:

Surface plasmon resonance

STZ:

Streptozocin

STZ-NA:

Streptozotocin-nicotinamide

SOD:

Superoxide dismutase

TZD:

Thiazolidinedione

TG:

Triglycerides

TR-FRET:

Time-resolved fluorescence resonance energy transfer

T.B.:

Total Bilirubin

Z5-2 T:

(Z)-5(pyridine-2-ylmethylene)-2-thioxothiazolidin-4-one

References

  1. Fal M, El-Fal M, Sayah K et al (2017) Synthesis, and evaluation of α-amylase and α-glucosidase inhibitory potential of new pyrazolo [3,4-d]pyrimidine derivatives. Eur J Chem 8:105–108. https://doi.org/10.5155/eurjchem.8.2.105-108.1541

    Article  CAS  Google Scholar 

  2. American Diabetes Association (2020) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes care. https://doi.org/10.2337/dc20-S002

    Article  Google Scholar 

  3. IDF Diabetes Atlas International Diabetes Federation (2023) Google Scholar. https://scholar.google.com/scholar?q=IDF+Diabetes+Atlas+International+Diabetes+Federation+Brussels,+Belgium+International+Diabetes+Federation+2021+https://idf.org/e-library/epidemiology-research/diabetes-atlas.html+. Accessed 20 Oct 2023

  4. Hegazi R, El-Gamal M, Abdel-Hady N, Hamdy O (2015) Epidemiology of and risk factors for type 2 diabetes in Egypt. Ann Glob Health 81:814–820. https://doi.org/10.1016/j.aogh.2015.12.011

    Article  PubMed  Google Scholar 

  5. Hajji S, Aljenaee K, Garrahy A, Byrne M (2021) Successful transition from insulin to sulfonylurea, on second attempt, in a 24-year-old female with neonatal diabetes secondary to KCNJ11 gene mutation. BMJ Case Rep 14:e239973

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mifsud S, Schembri EL, Fava S (2019) A case of severe relapsing sulphonylurea-induced hypoglycaemia. BMJ Case Rep 12:e231368

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sartore G, Ragazzi E, Caprino R, Lapolla A (2023) Long-term HbA1c variability and macro-/micro-vascular complications in type 2 diabetes mellitus: a meta-analysis update. Acta Diabetol. https://doi.org/10.1007/s00592-023-02037-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Doyle-Delgado K, Chamberlain JJ, Shubrook JH, Skolnik N, Trujillo J (2020) Pharmacologic approaches to glycemic treatment of type 2 diabetes: synopsis of the 2020 American diabetes association’s standards of medical care in diabetes clinical guideline. Ann Intern Med 173:813–821

    Article  PubMed  Google Scholar 

  9. Rakhis Sr SAB, AlDuwayhis NM, Aleid N et al (2022) Glycemic control for type 2 diabetes mellitus patients: a systematic review. Cureus. https://doi.org/10.7759/CUREUS.26180

    Article  Google Scholar 

  10. Lebovitz HE (2019) Thiazolidinediones: the forgotten diabetes medications. Curr Diab Rep. https://doi.org/10.1007/S11892-019-1270-Y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Long N, Le Gresley A, Wren SP (2021) Thiazolidinediones: an in–depth study of their synthesis and application to medicinal chemistry in the treatment of diabetes mellitus. ChemMedChem 16:1717. https://doi.org/10.1002/CMDC.202100177

    Article  PubMed Central  Google Scholar 

  12. Ahn S, Lee M, An S et al (2018) 2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through PPARγ partial agonism. Bioorg Med Chem 26:1069–1075. https://doi.org/10.1016/J.BMC.2018.01.019

    Article  PubMed  CAS  Google Scholar 

  13. Lehmann JM, Moore LB, Smith-Oliver TA et al (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem 270:12953–12956. https://doi.org/10.1074/jbc.270.22.12953

    Article  PubMed  CAS  Google Scholar 

  14. Dirven H, Vist GE, Bandhakavi S, Mehta J, Fitch SE, Pound P, Ram R, Kincaid B, Leenaars CHC, Chen M, Wright RA, Tsaioun K (2021) Performance of preclinical models in predicting drug-induced liver injury in humans: a systematic review. Sci Rep 11:6403. https://doi.org/10.1038/s41598-021-85708-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Babai S, Auclert L, Le-Louet H (2021) Safety data and withdrawal of hepatotoxic drugs. Therapie 76:715–723. https://doi.org/10.1016/j.therap.2018.02.004

    Article  PubMed  Google Scholar 

  16. Mannucci E, Dicembrini I (2015) Drugs for type 2 diabetes: role in the regulation of bone metabolism. Clin Cases Miner Bone Metab. https://doi.org/10.11138/CCMBM/2015.12.2.130

    Article  PubMed  PubMed Central  Google Scholar 

  17. Good AC, Liu J, Hirth B, Asmussen G, Xiang Y, Biemann HP, Bishop KA, Fremgen T, Fitzgerald M, Gladysheva T, Jain A, Jancsics K, Metz M, Papoulis A, Skerlj R, Stepp JD, Wei RR (2012) J Med Chem 55:2641–2648

    Article  PubMed  CAS  Google Scholar 

  18. Mueller SL, Chrysanthopoulos PK, Halili MA et al (2021) The glitazone class of drugs as carbonic anhydrase inhibitors—a spin-off discovery from fragment screening. Molecules. https://doi.org/10.3390/MOLECULES26103010

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shang J, Brust R, Griffin PR, Kamenecka TM, Kojetin DJ (2019) Quantitative structural assessment of graded receptor agonism. Proc Natl Acad Sci 116(44):22179–22188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chrysanthopoulos PK, Mujumdar P, Woods LA, Dolezal O, Ren B, Peat TS, Poulsen SA (2017) Identification of a new zinc binding chemotype by fragment screening. J Med Chem 60(17):7333–7349

    Article  PubMed  CAS  Google Scholar 

  21. Kumar H, Aggarwal N, Marwaha MG, Deep A, Chopra H, Matin MM, Al-Harrasi A (2022) Thiazolidin-2, 4-dione scaffold: an insight into recent advances as antimicrobial, antioxidant, and hypoglycemic agents. Molecules 27(19):6763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Soni HI, Patel NB, Parmar RB, Chan-Bacab MJ, Rivera G (2022) Microwave irradiated synthesis of pyrimidine containing, thiazolidin-4-ones: antimicrobial, anti-tuberculosis, antimalarial and anti-protozoa evaluation. Lett Org Chem 19(9):731–738

    Article  CAS  Google Scholar 

  23. Dreyer C, Krey G, Keller H et al (1992) Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887. https://doi.org/10.1016/0092-8674(92)90031-7

    Article  PubMed  CAS  Google Scholar 

  24. Schouten H, Klitgord KD, Whitehead JA, Macdonald KC (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    Article  Google Scholar 

  25. Meirhaeghe A, Amouyel P (2004) Impact of genetic variation of PPAR in humans. Mol Genet Metab 83:93–102. https://doi.org/10.1016/j.ymgme.2004.08.014

    Article  PubMed  CAS  Google Scholar 

  26. Zoete V, Grosdidier A, Michielin O (2007) Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim et Biophys Acta (BBA)—Mol Cell Biol Lipids. https://doi.org/10.1016/j.bbalip.2007.01.007

    Article  Google Scholar 

  27. Chittiboyina AG, Venkatraman MS, Mizuno CS et al (2006) Design and synthesis of the first generation of dithiolane thiazolidinedione-and phenylacetic acid-based PPARγ agonists. J Med Chem. https://doi.org/10.1021/jm0510880

    Article  PubMed  Google Scholar 

  28. Madhavan GR, Chakrabarti R, Vikramadithyan RK et al (2002) Synthesis and biological activity of novel pyrimidinone containing thiazolidinedione derivatives. Bioorg Med Chem 10(8):2671–2680

    Article  PubMed  CAS  Google Scholar 

  29. Naim MJ, Alam O, Alam MJ et al (2018) Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole-based 2,4-thiazolidinedione derivatives as PPAR-γ modulators. Arch Pharm (Weinheim). https://doi.org/10.1002/ARDP.201700223

    Article  PubMed  Google Scholar 

  30. Hinnah K, Willems S, Morstein J et al (2020) Photohormones enable optical control of the peroxisome proliferator-activated receptor γ (PPARγ). J Med Chem. https://doi.org/10.1021/acs.jmedchem.0c00654

    Article  PubMed  Google Scholar 

  31. Shakour N, Sahebkar A, Karimi G et al (2021) Design, synthesis and biological evaluation of novel 5-(imidazolyl-methyl) thiazolidinediones as antidiabetic agents. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.105162

    Article  PubMed  Google Scholar 

  32. Feng L, Lu S, Zheng Z et al (2021) Identification of an allosteric hotspot for additive activation of PPARγ in antidiabetic effects. Sci Bull (Beijing) 66:1559–1570. https://doi.org/10.1016/j.scib.2021.01.023

    Article  PubMed  CAS  Google Scholar 

  33. Bar M, Skóra B, Tabęcka-Łonczyńska A et al (2022) New 4-thiazolidinone-based molecules Les-2769 and Les-3266 as possible PPARγ modulators. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2022.106075

    Article  PubMed  Google Scholar 

  34. Sun J, Liu HY, Zhang YH et al (2021) Design, synthesis and bioactivity evaluation of thiazolidinedione derivatives as partial agonists targeting PPARγ. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.105342

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar AP, Mandal S, Prabitha P et al (2022) Rational design, molecular docking, dynamic simulation, synthesis, PPAR-γ competitive binding and transcription analysis of novel glitazones. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.133354

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mandal S, Chiriki DS, Gurupadayya BM et al (2022) Phenyl glycine incorporated glitazones as promising novel antidiabetic agents through PPARγ agonism: design, synthesis and preclinical studies. Eur J Med Chem Rep. https://doi.org/10.1016/j.ejmcr.2022.100067

    Article  Google Scholar 

  37. Amin S, Sheikh KA, Iqubal A et al (2023) Synthesis, in-Silico studies and biological evaluation of pyrimidine based thiazolidinedione derivatives as potential anti-diabetic agent. Bioorg Chem. https://doi.org/10.1016/J.BIOORG.2023.106449

    Article  PubMed  Google Scholar 

  38. Kumar P, Duhan M, Kadyan K et al (2017) Synthesis of novel inhibitors of α-amylase based on the thiazolidine-4-one skeleton containing a pyrazole moiety and their configurational studies. Medchemcomm 8:1468–1476. https://doi.org/10.1039/C7MD00080D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Teng H, Chen L (2017) α-Glucosidase and α-amylase inhibitors from seed oil: a review of liposoluble substance to treat diabetes. Crit Rev Food Sci Nutr 57:3438–3448. https://doi.org/10.1080/10408398.2015.1129309

    Article  PubMed  CAS  Google Scholar 

  40. Qin X, Ren L, Yang X et al (2011) Structures of human pancreatic α-amylase in complex with acarviostatins: implications for drug design against type II diabetes. J Struct Biol 174:196–202. https://doi.org/10.1016/J.JSB.2010.11.020

    Article  PubMed  CAS  Google Scholar 

  41. de Sales PM, de Souza PM, Simeoni LA et al (2012) α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 15:141–183. https://doi.org/10.18433/J35S3K

    Article  PubMed  Google Scholar 

  42. Bashary R, Vyas M, Nayak SK et al (2020) An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr Diabetes Rev 16:117–136. https://doi.org/10.2174/1573399815666190618093315

    Article  PubMed  Google Scholar 

  43. Rathod CH, Nariya PB, Maliwal D et al (2021) Design, synthesis and antidiabetic activity of biphenylcarbonitrile-thiazolidinedione conjugates as potential α-amylase inhibitors. ChemistrySelect 6:2464–2469. https://doi.org/10.1002/SLCT.202004362

    Article  CAS  Google Scholar 

  44. Yousuf S, Khan KM, Salar U et al (2018) 2’-Aryl and 4’-arylidene substituted pyrazolones: as potential α-amylase inhibitors. Eur J Med Chem 159:47–58. https://doi.org/10.1016/J.EJMECH.2018.09.052

    Article  PubMed  CAS  Google Scholar 

  45. Naeem F, Nadeem H, Muhammad A et al (2018) Synthesis, α-Amylase Inhibitory Activity and Molecular Docking Studies of 2,4-Thiazolidinedione Derivatives. Open Chem J 5:134–144. https://doi.org/10.2174/1874842201805010134

    Article  Google Scholar 

  46. Addanki HR, Vallabhaneni MR, Chennamsetty S et al (2022) An in silico ADMET, molecular docking study and microwave-assisted synthesis of new phosphorylated derivatives of thiazolidinedione as potential anti-diabetic agents. Synth Commun 52:300–315. https://doi.org/10.1080/00397911.2021.2024574

    Article  CAS  Google Scholar 

  47. Doddagaddavalli MA, Kalalbandi VKA, Seetharamappa J (2023) Synthesis, characterization, crystallographic, binding, in silico and antidiabetic studies of novel 2,4-thiazolidinedione-phenothiazine molecular hybrids. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134625

    Article  Google Scholar 

  48. Gupta S, Baweja GS, Gupta GD, Asati V (2023) Identification of potential N-substituted 5-benzylidenethiazolidine-2,4-dione derivatives as α-amylase inhibitors: computational cum synthetic studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2023.135596

    Article  Google Scholar 

  49. Singh R, Kumar P, Sindhu J et al (2023) Parsing structural fragments of thiazolidin-4-one based α-amylase inhibitors: A combined approach employing in vitro colorimetric screening and GA-MLR based QSAR modelling supported by molecular docking, molecular dynamics simulation and ADMET studies. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2023.106776

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kaur R, Kumar R, Dogra N, Yadav AK (2022) Design, synthesis, biological evaluations and in silico studies of sulfonate ester derivatives of 2-(2-benzylidenehydrazono)thiazolidin-4-one as potential α-glucosidase inhibitors. J Mol Struct 1247:131266. https://doi.org/10.1016/J.MOLSTRUC.2021.131266

    Article  CAS  Google Scholar 

  51. Jiang B, Luo J, Guo S, Wang L (2021) Discovery of 5-(3-bromo-2-(2,3-dibromo-4,5-dimethoxybenzyl)-4,5-dimethoxybenzylidene)thiazolidine-2,4-dione as a novel potent protein tyrosine phosphatase 1B inhibitor with antidiabetic properties. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.104648

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thareja S, Verma SK, Jain AK et al (2023) Rational design and synthesis of novel biphenyl thiazolidinedione conjugates as inhibitors of protein tyrosine phosphatase 1B for the management of type 2 diabetes. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134546

    Article  Google Scholar 

  53. Mohd Siddique MU, Thakur A, Shilkar D et al (2021) Non-carboxylic acid inhibitors of aldose reductase based on N-substituted thiazolidinedione derivatives. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2021.113630

    Article  PubMed  Google Scholar 

  54. Kumar Pasala V, Gudipudi G, Sankeshi V et al (2021) Design, synthesis and biological evaluation of selective hybrid coumarin-thiazolidinedione aldose reductase-II inhibitors as potential antidiabetics. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.104970

    Article  PubMed  Google Scholar 

  55. Kratky M, Sramel P, Bodo P et al (2023) Novel rhodanine based inhibitors of aldose reductase of non-acidic nature with p-hydroxybenzylidene functional group. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2022.114922

    Article  PubMed  Google Scholar 

  56. Thari FZ, Fettach S, Anouar EH et al (2022) Synthesis, crystal structures, α-glucosidase and α-amylase inhibition, DFT and molecular docking investigations of two thiazolidine-2,4-dione derivatives. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.132960

    Article  Google Scholar 

  57. Gummidi L, Kerru N, Ebenezer O et al (2021) Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.105210

    Article  PubMed  Google Scholar 

  58. Angajala G, Aruna V, Pavan P, Guruprasad Reddy P (2022) Biocatalytic one pot three component approach: Facile synthesis, characterization, molecular modelling and hypoglycemic studies of new thiazolidinedione festooned quinoline analogues catalyzed by alkaline protease from Aspergillus niger. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.105533

    Article  PubMed  Google Scholar 

  59. Shah M, Jan MS, Sadiq A et al (2023) SAR and lead optimization of (Z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl)thiazolidine-2,4-dione as a potential multi-target antidiabetic agent. Eur J Med Chem 258:115591. https://doi.org/10.1016/j.ejmech.2023.115591

    Article  PubMed  CAS  Google Scholar 

  60. Khan AA, Ullah H, Rahim F et al (2023) Synthesis, in vitro α-glucosidase and α-amylase activities, and an in silico molecular docking study of triazinoindole-thiazolidinone hybrid derivatives. Chem Data Collect. https://doi.org/10.1016/j.cdc.2023.101035

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Guru Nanak Dev University for providing them the basic facilities to do this work. NK acknowledges funds from ICMR-BMI (BMI/11(04)/2022) for completing this work.

Funding

Nitish Kumar,ICMR-BMI (BMI/11(04)/2022)

Author information

Authors and Affiliations

Authors

Contributions

AS contributed toward conceptualization, roles/writing—original draft, data curation, and writing—review & editing; NK contributed toward investigation, validation, funding acquisition, formal analysis, and writing—review & editing; HKG, RR, AK, J, and MD contributed toward writing—review & editing; JVS and PSB contributed toward project administration, formal analysis, and Supervision.

Corresponding authors

Correspondence to Anchal Sharma or Preet Mohinder Singh Bedi.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kumar, N., Gulati, H.K. et al. Antidiabetic potential of thiazolidinedione derivatives with efficient design, molecular docking, structural activity relationship, and biological activity: an update review (2021–2023). Mol Divers (2024). https://doi.org/10.1007/s11030-023-10793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10793-6

Keywords

Navigation