Skip to main content
Log in

Recent synthetic approaches towards thienothiophenes: a potential template for biologically active compounds

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Heterocyclic compounds are attractive candidates because of their vast applications in natural and physical sciences. Thienothiophene (TT) is an annulated ring of two thiophene rings with a stable and electron-rich structure. Thienothiophenes (TTs) fully represent the planar system, which can drastically alter or improve the fundamental properties of organic, π-conjugated materials when included into a molecular architecture. These molecules possessed many applications including, pharmaceutical as well as optoelectronic properties. Different isomeric forms of thienothiophene showed various applications such as antiviral, antitumor, antiglaucoma, antimicrobial, and as semiconductors, solar cells, organic field effect transistors, electroluminiscents etc. A number of methodologies were adopted to synthesize thienothiophene derivatives. In this review, we have addressed different synthetic strategies of various isomeric forms of thienothiophene that have been reported during last seven years, i.e., 2016–2022.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminium oxide

Br-TT-PhCN:

4-(2,5-Dibromothieno[3,2-b]thiophen-3-yl) benzonitrile

(CH2)CN2 :

Malononitrile

CS2 :

Carbon disulphide

DCM:

Dichloromethane

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulphoxide

LED:

Light-emiting diode

Mes2BF:

Dimesitylboron flouride

n-BuLi:

n-Butyl Lithium

NBS:

N-Bromosuccinimide

NEt3 :

Triethylamine

OFETs:

Organic field effect transistors

OLEDs:

Organic light emitting diodes

Pd2(dba)3 :

Tris(dibenzylideneacetone)dipallium (0)

Pd(OAc)2 :

Palladium (II) acetate

P(o-tolyl)3 :

Tris(o-tolyl)phosphine

PPA:

Polyphosphoric acid

Pd (PPh3)4 :

Tetrakis(triphenylphosphine)Palladium

Pd(PPh3)2Cl2 :

Bis(Triphenylphosphine)palladium (II) dichloride

p-TsOH:

p-Toluenesulfonic acid

TEA:

Triethylamine

THF:

Tetrahydrofuran

TPA:

Triphenylaminme

TPE:

Tetraphenylethylene

TPE-TTs:

Tetraphenylethylene-thienothiophenes

TT:

Thienothiophene

TT-TPA:

Thienothiophene-triphenylamine

TT-TPA-TPE3:

Thienothiophene-tripheneylamine-tetraphenylethylene

TTs:

Thienothiophenes

References

  1. Thakral S, Singh V (2019) Recent development on importance of heterocyclic amides as potential bioactive molecules: a review. Curr Bioact Compd 15:316–336. https://doi.org/10.2174/1573407214666180614121140

    Article  CAS  Google Scholar 

  2. Iftikhar R, Khan FZ, Naeem N (2023) Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications : a review. Mol Divers. https://doi.org/10.1007/s11030-022-10597-0

    Article  PubMed  Google Scholar 

  3. Mabkhoot YN (2009) Synthesis and analysis of some bis-heterocyclic compounds containing sulphur. Molecules 14:1904–1914. https://doi.org/10.3390/molecules14051904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mishra R, Jha KK, Kumar S, Tomer I (2011) Synthesis, properties and biological activity of thiophene: a review. Der Pharma Chemica 3:38–54

    CAS  Google Scholar 

  5. Wu C, Decker ER, Blok N, Bui H, You TJ, Wang J, Bourgoyne AR, Knowles V, Berens KL, Holland GW, Brock TA, Dixon RAF (2004) Discovery, modeling, and human pharmacokinetics of N-(2-acetyl-4,6-dimethylphenyl)-3-(3,4-dimethylisoxazol-5-ylsulfamoyl) -thiophene-2-carboxamide (TBC3711), a second generation, ETA selective, and orally bioavailable endothelin antagonist. J Med Chem 47:1969–1986. https://doi.org/10.1021/jm030528p

    Article  CAS  PubMed  Google Scholar 

  6. Podlesný J, Bureš F (2022) Thienothiophene scaffolds as building blocks for (opto)electronics. Organics 3:446–469. https://doi.org/10.3390/org3040029

    Article  CAS  Google Scholar 

  7. Leriche P, Raimundo JM, Turbiez M, Monroche V, Allain M, Sauvage FX, Roncali J, Frére P, Skabara PJ (2003) Linearly extended tetrathiafulvalene analogues with fused thiophene units as π-conjugated spacers. J Mater Chem 13:1324–1332. https://doi.org/10.1039/b301149f

    Article  CAS  Google Scholar 

  8. Mashraqui SH, Sangvikar Y, Ashraf M, Kumar S, Dâub ETH (2005) Dipyridyl/pyridiniumthieno[2,3-b]thiophenes as new atropisomeric systems. synthesis, conformational analysis and energy minimization. Tetrahedron 61:3507–3513. https://doi.org/10.1016/j.tet.2005.01.123

    Article  CAS  Google Scholar 

  9. Mashraqui SH, Sangvikar YS, Meetsma A (2006) Synthesis and structures of thieno[2,3-b]thiophene incorporated [3.3]dithiacyclophanes. Enhanced first hyperpolarizability in an unsymmetrically polarized cyclophane. Tetrahedron Lett 47:5599–5602. https://doi.org/10.1016/j.tetlet.2006.05.098

    Article  CAS  Google Scholar 

  10. Heeney M, Bailey C, Genevicius K, Shkunov M, Sparrowe D, Tierney S, McCulloch I (2005) Stable polythiophene semiconductors incorporating thieno[2,3-b]thiophene. J Am Chem Soc 127:1078–1079. https://doi.org/10.1021/ja043112p

    Article  CAS  PubMed  Google Scholar 

  11. Lee B, Seshadri V, Palko H, Sotzing GA (2005) Ring-sulfonated poly(thienothiophene). Adv Mater 17:1792–1795. https://doi.org/10.1002/adma.200500210

    Article  CAS  Google Scholar 

  12. Kim HS, Kim YH, Kim TH, Noh YY, Pyo S, Yi MH, Kim DY, Kwon SK (2007) Synthesis and studies on 2-hexylthieno[3,2-b]thiophene end-capped oligomers for OTFTs. Chem Mater 19:3561–3567. https://doi.org/10.1021/cm070053g

    Article  CAS  Google Scholar 

  13. Lim E, Jung BJ, Lee J, Shim HK, Lee JI, Yang YS, Do LM (2005) Thin-film morphologies and solution-processable field-effect transistor behavior of a fluorene - thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules 38:4531–4535. https://doi.org/10.1021/ma048128e

    Article  CAS  Google Scholar 

  14. Jarak I, Kralj M, Piantanida I, Šuman L, Žinić M, Pavelić K, Karminski-Zamola G (2006) Novel cyano- and amidino-substituted derivatives of thieno[2,3-b]- and thieno[3,2-b]thiophene-2-carboxanilides and thieno[3′,2′:4,5]thieno- and thieno[2′,3′:4,5]thieno [2,3-c]quinolones: synthesis, photochemical synthesis, DNA binding, and antitumor evaluation. Bioorg Med Chem 14:2859–2868. https://doi.org/10.1016/j.bmc.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  15. Cinar ME, Ozturk T (2015) Thienothiophenes, dithienothiophenes, and thienoacenes : syntheses, oligomers, polymers, and properties. Chem Rev 115:3036–3140. https://doi.org/10.1021/cr500271a

    Article  CAS  PubMed  Google Scholar 

  16. Comel A, Sommen G, Kirsch G (2005) Thienothiophenes: synthesis and applications. Mini-Rev Org Chem 1:367–374. https://doi.org/10.2174/1570193043403118

    Article  Google Scholar 

  17. Kim J, Shim HS, Lee H, Choi MS, Kim JJ, Seo Y (2014) Highly efficient vacuum-processed organic solar cells containing thieno[3,2-b]thiophene-thiazole. J Phys Chem C 118:11559–11565. https://doi.org/10.1021/jp5017467

    Article  CAS  Google Scholar 

  18. Bronstein H, Chen Z, Ashraf RS, Zhang W, Du J, Durrant JR, Tuladhar PS, Song K, Watkins SE, Wienk GY, MM, Janseen RAJ, Anthopolous T, Sirringhaus H, Heeney M, McCulloch I, (2011) Thieno[3,2-b]thiophene-diketopyrrolopyrrole containing polymers for high performance organic field effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275. https://doi.org/10.1021/ja110619k

    Article  CAS  PubMed  Google Scholar 

  19. Chen YC, Chou HH, Tsai MC, Chen SY, Lin JT, Yao CF, Chen K (2012) Thieno[3,4-b]thiophene-based organic dyes for dye-sensitized solar cells. Chem Eur J 18:5430–5437. https://doi.org/10.1002/chem.201200012

    Article  CAS  PubMed  Google Scholar 

  20. Mabkhot YN, Barakat A, Al-Majid AM, Choudhary MI (2013) Synthesis of thieno[2,3-b]thiophene containing bis-heterocycles-novel pharmacophores. Int J Mol Sci 14:5712–5722. https://doi.org/10.3390/ijms14035712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mabkhot YN, Kheder NA, Farag AM (2013) Synthesis and antimicrobial activity of some new thieno[2,3-b]thiophene derivatives. Molecules 18:4669–4678. https://doi.org/10.3390/molecules18044669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Výprachtický D, Demirtas I, Dzhabarov V, Pokorná V, Ertas E, Ozturk T, Cimrová V (2017) New copolymers with thieno[3,2-b]thiophene or dithieno [3,2-b:2’,3’-d]thiophene units possessing electron-withdrawing 4-cyanophenyl groups : synthesis and photophysical, electrochemical, and electroluminescent properties. J Polym Sci, Part A: Polym Chem 55:2629–2638. https://doi.org/10.1002/pola.28657

    Article  CAS  Google Scholar 

  23. Isci R, Varzeghani AR, Kaya K, Sütay B, Tekin E, Ozturk T (2022) Triphenylamine/Tetraphenylethylene substituted 4-thieno[3,2-b]thiophen-3-ylbenzonitriles: synthesis, photophysical-electronic properties, and applications. ACS Sustain Chem Eng 10:1605–1615. https://doi.org/10.1021/acssuschemeng.1c07240

    Article  CAS  Google Scholar 

  24. Ilhan KT, Topal S, Eroglu MS, Ozturk T (2019) Concise synthesis of 3-alkylthieno[3,2-b]thiophene; building block for organic electronic and optoelectronic materials. RSC Adv 9:38407–38413. https://doi.org/10.1039/c9ra08023f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Topal S, Topal S, Ulukan P, Ustamehmetoğlu B, Ozturk T, Sezer E (2021) Synthesis and characterization of 3-(4-fluorophenyl) thieno [3,2-b] thiophene and 3, 3′-(4-fluorophenyl) dithieno [3,2-b;2′,3′-d] thiophene molecules. Electrochim Acta 390:138837. https://doi.org/10.1016/j.electacta.2021.138837

    Article  CAS  Google Scholar 

  26. Gunturkun D, Isci R, Sütay B, Majewski LA, Faraji S, Ozturk T (2022) Copolymers of 3-arylthieno [3,2-b] thiophenes bearing different substituents : synthesis, electronic, optical, sensor and memory properties. Eur Polym J 170:111167. https://doi.org/10.1016/j.eurpolymj.2022.111167

    Article  CAS  Google Scholar 

  27. Isci R, Tekin E, Mucur SP, Ozturk T (2020) A bifunctional bulky thienothiophene derivative; synthesis, electronic-optical properties and OLED applications. ChemistrySelect 5:13091–13098. https://doi.org/10.1002/slct.202003273

    Article  CAS  Google Scholar 

  28. Turkoglu G, Cinar ME, Buyruk A, Tekin E, Mucur SP, Kaya K, Ozturk T (2016) Novel organoboron compounds derived from thieno[3,2-b] thiophene and triphenylamine units for OLED devices. J Mater Chem C 4:6045–6053. https://doi.org/10.1039/c6tc01285j

    Article  CAS  Google Scholar 

  29. Isci R, Tekin E, Kaya K, Mucur SP, Gorkem SF, Ozturk T (2020) Tetraphenylethylene substituted thienothiophene and dithienothiophene derivatives: synthesis, optical properties and OLED applications. J Mater Chem C 8:7908–7915. https://doi.org/10.1039/d0tc01715a

    Article  CAS  Google Scholar 

  30. Cinar ME, Engür E, Ozturk T (2018) Synthesis and characterization of organic light-emitting molecules possessing 3-(4-methoxyphenyl) thieno [3,2-b] thiophene and boron. Org Commun 11:68–74. https://doi.org/10.25135/acg.oc.45.18.05.103

    Article  CAS  Google Scholar 

  31. Manuela M, Raposo M, Herbivo C, Hugues V, Clermont G, Castro MCR, Comel A, Blanchard-Desce M (2016) Synthesis, fluorescence, and two-photon absorption properties of push–pull 5-arylthieno[3,2-b]thiophene derivatives. Eur J Org Chem 2016:5263–5273. https://doi.org/10.1002/ejoc.201600806

    Article  CAS  Google Scholar 

  32. Fernandes SS, Castro MCR, Mesquita I, Andrade L, Mendes A, Raposo MMM (2016) Synthesis and characterization of novel thieno[3,2-b]thiophene based metal-free organic dyes with different heteroaromatic donor moieties as sensitizers for dye-sensitized solar cells. Dyes Pigm 136:46–53. https://doi.org/10.1016/j.dyepig.2016.08.020

    Article  CAS  Google Scholar 

  33. Fernandes SS, Mesquita I, Andrade L, Mendes A, Justino LL, Burrows HD, Raposo MMM (2017) Synthesis and characterization of push-pull bithiophene and thieno[3,2-b]thiophene derivatives bearing an ethyne linker as sensitizers for dye-sensitized solar cells. Org Electron 49:194–205. https://doi.org/10.1016/j.orgel.2017.06.048

    Article  CAS  Google Scholar 

  34. Sarjadi MS, Iraqi A (2016) Synthesis of carbazole based co-polymers containing thienothiophene and benzothiadiazole units in a direct arylation scheme. Polym Polym Compos 24:703–710. https://doi.org/10.1177/096739111602400905

    Article  CAS  Google Scholar 

  35. Buyruk A, Cinar ME, Eroglu MS, Ozturk T (2016) Polymerization of thienothiophenes and dithienothiophenes via Click-reaction for electronic applications. ChemistrySelect 1:3028–3032. https://doi.org/10.1002/slct.201600697

    Article  CAS  Google Scholar 

  36. Li Y, Lee TH, Park SY, Uddin MA, Kim T, Hwang S, Kim JY, Woo HY (2016) Straight chain D-A copolymers based on thienothiophene and benzothiadiazole for efficient polymer field effect transistors and photovoltaic cells. Polym Chem 7:4638–4646. https://doi.org/10.1039/c6py00674d

    Article  CAS  Google Scholar 

  37. Kim MJ, Choi JY, An G, Kim H, Kang Y, Kim JK, Son HJ, Lee JH, Cho JH, Kim B (2016) A new rigid planar low band gap PTTDPP-DT-DTT polymer for organic transistors and performance improvement through the use of a binary solvent system. Dyes Pigm 126:138–146. https://doi.org/10.1016/j.dyepig.2015.11.022

    Article  CAS  Google Scholar 

  38. Turkoglu G, Cinar ME, Ozturk T (2017) Synthesis and photophysical and anion sensing properties of triarylborane-substituted cross-conjugated and conjugated thienothiophenes. Eur J Org Chem 2017:4552–4561. https://doi.org/10.1002/ejoc.201700679

    Article  CAS  Google Scholar 

  39. Madathil PK, Cho S, Choi S, Kim TD, Lee KS (2018) Synthesis and characterization of cyclopentadithiophene and thienothiophene-based polymers for organic thin-film transistors and solar cells. Macromol Res 26:934–941. https://doi.org/10.1007/s13233-018-6130-0

    Article  CAS  Google Scholar 

  40. Le TH, Dao QD, Nghiém MP, Péralta S, Guillot R, Pham QN, Fujii A, Ozaki M, Goubard F, Bui TT (2018) Triphenylamine – thienothiophene organic charge-transport molecular materials : effect of substitution pattern on their thermal, photoelectrochemical, and photovoltaic properties. Chem An Asian J 13:1302–1311. https://doi.org/10.1002/asia.201701790

    Article  CAS  Google Scholar 

  41. Zhai W, Tang A, Xiao B, Wang X, Chen F, Zhou E (2018) A small molecular electron acceptor based on asymmetric hexacyclic core of thieno[1,2-b]indaceno[5,6-b′]thienothiophene for efficient fullerene-free polymer solar cells. Sci Bull 63:845–852. https://doi.org/10.1016/j.scib.2018.05.025

    Article  CAS  Google Scholar 

  42. Sarjadi MS, Tan SE, Iraqi A (2018) Preparation and properties of fluorene-based thienothiophene substituted benzothiadiazole copolymer for the application of polymeric solar cells. Malays J Chem 20:24–32

    Google Scholar 

  43. Podlesný J, Pytela O, Klikar M, Jelínková V, Kityk IV, Ozga K, Jedryka J, Rudysh M, Bureš F (2019) Small isomeric push-pull chromophores based on thienothiophenes with tunable optical (non)linearities. Org Biomol Chem 17:3623–3634. https://doi.org/10.1039/c9ob00487d

    Article  CAS  PubMed  Google Scholar 

  44. Marco AB, Martínez de Baroja N, Andrés-Castán JM, Franco S, Andreu R, Villacampa B, Orduna J, Garín J (2019) Pyranylidene/thienothiophene-based organic sensitizers for dye-sensitized solar cells. Dyes Pigm 161:205–213. https://doi.org/10.1016/j.dyepig.2018.09.035

    Article  CAS  Google Scholar 

  45. Jo Y, Oh GJ, Kim C, An TK, Jang J, Lee J (2020) Synthetic strategy for thienothiophene-benzotriazole-based polymers with high backbone planarity and solubility for field-effect transistor applications. J Ind Eng Chem 86:150–157. https://doi.org/10.1016/j.jiec.2020.02.022

    Article  CAS  Google Scholar 

  46. Sousa RPCL, Gonçalves RCR, Costa SPG, Figueira RB, Raposo MMM (2021) Heterocyclic aldehydes based on thieno[3,2-b] thiophene Core : Synthesis and preliminary studies as ion optical chemosensors. Chem proced 3:88. https://doi.org/10.3390/ecsoc-24-08092

    Article  Google Scholar 

  47. Vasilev A, Kostadinov A, Kandinska M, Landfester K, Baluschev S (2022) Tetrathienothiophene porphyrin as a metal-free sensitizer for room-temperature triplet – triplet annihilation up conversion. Front Chem 10:809863. https://doi.org/10.3389/fchem.2022.809863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Talamo MM, Pop F, Hume P, Abbas M, Wantz G, Avarvari N (2022) Helical thienothiophene (TT) and benzothieno-benzothiophene (BTBT) derivatives: synthesis, structural characterization and semiconducting properties. J Mater Chem C 10:8034–8042. https://doi.org/10.1039/d2tc00861k

    Article  CAS  Google Scholar 

  49. Rahman MM, Alamry KA, Awual MR, Mekky AEM (2020) Efficient Hg (II) ionic probe development based on one-step synthesized diethyl thieno [2,3-b] thiophene-2,5-dicarboxylate (DETTDC2) onto glassy carbon electrode. Microchem J 152:104291. https://doi.org/10.1016/j.microc.2019.104291

    Article  CAS  Google Scholar 

  50. Wang D, Wan YP, Liu H, Wang DJ, Yin GD (2018) Synthesis, photoluminescent and electrochemical properties of diacetoxyboron derivatives for bis- β -diketone linked thienothiophene. Dyes Pigm 149:728–735. https://doi.org/10.1016/j.dyepig.2017.11.030

    Article  CAS  Google Scholar 

  51. Mohamed MAA, Salah H, El-Saghier AMM (2019) Synthesis, reactions and biological evaluation of some novel thienothiophene derivatives. Eur J Chem 10:209–217. https://doi.org/10.5155/eurjchem.10.3.209-217.1850

    Article  CAS  Google Scholar 

  52. Cinar ME, Cankaya ST, Capan A, Eroglu MS, Ozturk T (2018) Thieno[2,3-b] thiophene based polymers: synthesis and optoelectronic properties. Eur Polymer J 104:72–80. https://doi.org/10.1016/j.eurpolymj.2018.05.001

    Article  CAS  Google Scholar 

  53. Aly KI, Moustafa AH, Ahmed EK, Abd El-Lateef HM, Mohamed MG, Mohamed SM (2018) New polymer syntheses part 60: a facile synthetic route to polyamides based on thieno[2,3-b]thiophene and their corrosion inhibition behavior. Chin J Polym Sci 36:835–847. https://doi.org/10.1007/s10118-018-2101-3

    Article  CAS  Google Scholar 

  54. Ali TE, Assiri MA (2021) A convenient one-pot synthesis of novel functionalized thiophene, thieno[2,3-b] thiophene, thiopyran, and thiopyrano[2,3-b]thiopyran bearing phosphonate groups. J Sulfur Chem 42:490–498. https://doi.org/10.1080/17415993.2021.1909027

    Article  CAS  Google Scholar 

  55. Gomha SM, Edrees MM, El-Arab EE (2016) Synthesis and preliminary In-Vitro cytotoxic evaluation of some novel bis-heterocycles incorporating thienothiophene. J Heterocycl Chem 54:641–647. https://doi.org/10.1002/jhet.2636

    Article  CAS  Google Scholar 

  56. Qiu F, Yang J, Shi D, Zhang Q, Li J (2016) Synthesis of thieno[2,3-b]thiophene fused pyrimidine derivatives via sequential conversion of 3,4-diaminothieno[2,3-b]thiophene-2,5-dicarbonitrile with carbonyl compounds. Tetrahedron Lett 57:1210–1214. https://doi.org/10.1016/j.tetlet.2016.01.040

    Article  CAS  Google Scholar 

  57. Gomha SM, Badrey MG, Edrees MM (2016) Heterocyclisation of 2,5-diacetyl-3,4-disubstituted-thieno[2,3-b] thiophene bis-thiosemicarbazones leading to bis-thiazoles and bis-1,3,4-thiadiazoles anti-breast cancer agents. J Chem Res 40:120–125. https://doi.org/10.3184/174751916x14537182696214

    Article  CAS  Google Scholar 

  58. Sayed OM, Mekky AEM, Farag AM, Elwahy AHM (2016) 3,4-bis(bromomethyl)thieno[2,3-b]thiophene: versatile precursors for novel bis(triazolothiadiazines), bis(quinoxalines), bis(dihydrooxadiazoles), and bis(dihydrothiadiazoles). J Heterocycl Chem 53:1113–1120. https://doi.org/10.1002/jhet.2373

    Article  CAS  Google Scholar 

  59. Gomha SM, El-Hashash MA, Edrees MM, El-Arab EE (2017) Synthesis, characterization, and molecular docking of novel bis-thiazolyl thienothiophene derivatives as promising cytotoxic antitumor drug. J Heterocycl Chem 54:2686–2695. https://doi.org/10.1002/jhet.2869

    Article  CAS  Google Scholar 

  60. Eid EM, Hassaneen HME, Abdelhamid IA, Elwahy AHM (2020) Facile one-pot, three-component synthesis of novel bis( heterocycles) incorporating thieno [2,3-b] thiophenes via Michael addition reaction. J Heterocycl Chem 57:2243–2255. https://doi.org/10.1002/jhet.3945

    Article  CAS  Google Scholar 

  61. El-Remailya MAAA, Shokr EK, Abdel-Ghany H, Kamel MS, Elhady OM, Soliman AM (2022) Synthesis of some new thieno[2,3-b ]thiophene derivatives and prediction their biological activity by PASS INET. Sohag J Sc 7:9–13. https://doi.org/10.21608/sjsci.2022.233419

    Article  Google Scholar 

  62. Chagas GR, Darmanin T, Godeau G, Guittard F (2018) Nanocups and hollow microspheres formed by a one-step and templateless electropolymerization of thieno [3,4-b]thiophene derivatives as a function of the substituent. Electrochim Acta 269:462–478. https://doi.org/10.1016/j.electacta.2018.03.036

    Article  CAS  Google Scholar 

  63. Chao YC, Chen JH, Chiou YJ, Kao PL, Wu JL, Chen CT, Chan LH, Jeng RJ (2020) Design of thienothiophene-based copolymers with various side chain-end groups for efficient polymer solar cells. Polymers 12:2964. https://doi.org/10.3390/polym12122964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ayesha Rafiq, Sana Aslam, Muhammad Shahid Nazir and Ambar Farooq conducted the thorough literature survey and wrote the primary draft. Matloob Ahmad and Sadia Sultan updated the manuscript to its final form. Matloob Ahmad supervised the activity.

Corresponding author

Correspondence to Matloob Ahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, A., Aslam, S., Ahmad, M. et al. Recent synthetic approaches towards thienothiophenes: a potential template for biologically active compounds. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10647-1

Keywords

Navigation