Skip to main content

Advertisement

Log in

Discovery of potent inhibitors targeting Glutathione S-transferase of Wuchereria bancrofti: a step toward the development of effective anti-filariasis drugs

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Lymphatic filariasis (LF) is one of the major health problems for the human kind in developing countries including India. LF is caused by three major nematodes namely Wuchereria bancrofti, Brugia malayi, and Brugia timori. The recent statistics of World Health Organization (WHO) showed that 51 million people were affected and 863 million people from 47 countries around worldwide remain threatened by LF. Among them, 90% of the filarial infection was caused by the nematode W. bancrofti. Approved drugs were available for the treatment of LF but many of them developed drug resistance and no longer effective in all stages of the infection. In the current research work, we explored the Glutathione S-transferase (GST) of W. bancrofti, the key enzyme responsible for detoxification that catalyzes the conjugation of reduced GSH (glutathione) to xenobiotic compounds. Initially, we analyzed the stability of the WbGST through 200 ns MD simulation and further structure-based virtual screening approach was applied by targeting the substrate binding site to identify the potential leads from small molecule collection. The in silico ADMET profiles for the top-ranked hits were predicted and the predicted non-toxic lead molecules showed the highest docking score in the range of − 12.72 kcal/mol to − 11.97 kcal/mol. The cross docking of the identified hits with human GST revealed the potential binding specificity of the hits toward WbGST. Through WbGST–lead complex simulation, the lead molecules were observed to be stable and also intactly bound within the binding site of WbGST. Based on the computational results, the five predicted non-toxic molecules were selected for the in vitro assay. The molecules showed significant percentage of inhibition against the filarial worm Setaria digitata which is the commonly used model organism to evaluate the filarial activity. In addition, the molecules also showed better IC50 than the standard drug ivermectin. The identified lead molecules will lay a significant insight for the development of new drugs with higher specificity and lesser toxicity to control and treat filarial infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ramaiah KD, Das PK, Michael E, Guyatt HL (2000) The economic burden of lymphatic filariasis in India. Parasitol Today 16:251–253. https://doi.org/10.1016/S0169-4758(00)01643-4

    Article  CAS  PubMed  Google Scholar 

  2. Ottesen EA (1985) Efficacy of diethylcarbamazine in eradicating infection with lymphatic-dwelling filariae in humans. Rev Infect Dis 7:341–356

    Article  CAS  PubMed  Google Scholar 

  3. Michael E, Bundy DAP (1997) Global mapping of lymphatic filariasis. Parasitol Today 13:472–476. https://doi.org/10.1016/S0169-4758(97)01151-4

    Article  CAS  PubMed  Google Scholar 

  4. Freedman DO (1998) Immune dynamics in the pathogenesis of human lymphatic filariasis. Parasitol Today 14:229–234. https://doi.org/10.1016/S0169-4758(98)01244-7

    Article  CAS  PubMed  Google Scholar 

  5. Simonsen PE, Mwakitalu ME (2013) Urban lymphatic filariasis. Parasitol Res 112:35–44. https://doi.org/10.1007/s00436-012-3226-x

    Article  PubMed  Google Scholar 

  6. Callahan HL, Crouch RK, James ER (1988) Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitol Today 4:218–225. https://doi.org/10.1016/0169-4758(88)90162-7

    Article  CAS  PubMed  Google Scholar 

  7. Selkirk ME, Smith VP, Thomas GR, Gounaris K (1998) Resistance of filarial nematode parasites to oxidative stress. Int J Parasitol 28:1315–1332. https://doi.org/10.1016/s0020-7519(98)00107-6

    Article  CAS  PubMed  Google Scholar 

  8. Asojo OA, Ceccarelli C (2014) Structure of glutathione S-transferase 1 from the major human hookworm parasite necatoramericanus (Na-GST-1) in complex with glutathione. Acta Crystallogr Sect F 70:1162–1166. https://doi.org/10.1107/S2053230X1401646X

    Article  CAS  Google Scholar 

  9. Brophy PM, Crowley P, Barrett J (1990) Detoxification reactions of Fasciola hepatica cytosolic glutathione transferases. Mol Biochem Parasitol 39:155–161. https://doi.org/10.1016/0166-6851(90)90054-P

    Article  CAS  PubMed  Google Scholar 

  10. Brophy PM, Southan C, Barrett J (1989) Glutathione transferases in the tapeworm Monieziaexpansa. Biochem J 262:939–946. https://doi.org/10.1042/bj2620939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sureshan M, Prabhu D, Aruldoss I, Saraboji K (2022) Potential inhibitors for peroxiredoxin 6 of W. bancrofti: a combined study of modelling, structure-based drug design and MD simulation. J Mol Graph Model 112:108115. https://doi.org/10.1016/j.jmgm.2021.108115

    Article  CAS  PubMed  Google Scholar 

  12. Sureshan M, Rajamanikandan S, Srimari S et al (2022) Designing specific inhibitors against dihydrofolate reductase of W. bancrofti towards drug discovery for lymphatic filariasis. Struct Chem 33:935–947. https://doi.org/10.1007/s11224-022-01896-1

    Article  CAS  Google Scholar 

  13. Rao UR, Salinas G, Mehta K, Klei TR (2000) Identification and localization of glutathione S-transferase as a potential target enzyme in Brugia species. Parasitol Res 86:908–915. https://doi.org/10.1007/s004360000255

    Article  CAS  PubMed  Google Scholar 

  14. Veerapathran A, Dakshinamoorthy G, Gnanasekar M et al (2009) Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoSNegl Trop Dis 3:e457

    Article  Google Scholar 

  15. Nathan ST, Mathew N, Kalyanasundaram M, Balaraman K (2005) Structure of glutathione S-transferase of the filarial parasite Wuchereria bancrofti: a target for drug development against adult worm. J Mol Model 11:194–199. https://doi.org/10.1007/s00894-005-0234-0

    Article  CAS  PubMed  Google Scholar 

  16. Sakthidevi M, Prabhu PR, Chowdhary S et al (2013) Functional analysis of genetic polymorphism in Wuchereria bancrofti glutathione S-transferase antioxidant gene: impact on protein structure and enzyme catalysis. Mol Biochem Parasitol 192:10–20. https://doi.org/10.1016/j.molbiopara.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  17. Müller J, Hemphill A (2016) Drug target identification in protozoan parasites. Expert Opin Drug Discov. https://doi.org/10.1080/17460441.2016.1195945

    Article  PubMed  PubMed Central  Google Scholar 

  18. López-López E, Barrientos-Salcedo C, Prieto-Martínez FD, Medina-Franco JL (2020) Chapter seven–In silico tools to study molecular targets of neglected diseases: inhibition of TcSir2rp3, an epigenetic enzyme of Trypanosomacruzi. In: Karabencheva-Christova T, Christov CBT (eds) Advances in Protein Chemistry and Structural Biology. Academic Press, Cambridge, pp 203–229

    Google Scholar 

  19. Egner U, Krätzschmar J, Kreft B et al (2005) The target discovery process. Chembiochem 6:468–479. https://doi.org/10.1002/CBIC.200400158

    Article  CAS  PubMed  Google Scholar 

  20. Shaker B, Ahmad S, Lee J et al (2021) In silico methods and tools for drug discovery. ComputBiol Med 137:104851. https://doi.org/10.1016/J.COMPBIOMED.2021.104851

    Article  Google Scholar 

  21. McWilliam H, Li W, Uludag M et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600. https://doi.org/10.1093/nar/gkt376

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282. https://doi.org/10.1093/bioinformatics/8.3.275

    Article  CAS  Google Scholar 

  23. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  25. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676. https://doi.org/10.1002/jcc.20090

    Article  CAS  PubMed  Google Scholar 

  26. Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363. https://doi.org/10.1107/S0907444904011679

    Article  CAS  PubMed  Google Scholar 

  27. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction Models for Water in Relation to Protein Hydration. Springer, Dordrecht, pp 331–342

    Google Scholar 

  28. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  29. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  30. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122. https://doi.org/10.1021/ct700200b

    Article  CAS  PubMed  Google Scholar 

  31. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962. https://doi.org/10.1002/jcc.540130805

    Article  CAS  Google Scholar 

  32. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  33. Prabhu D, Rajamanikandan S, Sureshan M et al (2021) Modelling studies reveal the importance of the C-terminal inter motif loop of NSP1 as a promising target site for drug discovery and screening of potential phytochemicals to combat SARS-CoV-2. J Mol Graph Model 106:107920. https://doi.org/10.1016/j.jmgm.2021.107920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  35. Prabhu D, Vidhyavathi R, Jeyakanthan J (2017) Computational identification of potent inhibitors for Streptomycin 3″-adenylyltransferase of Serratia marcescens. Microb Pathog 103:94–106. https://doi.org/10.1016/j.micpath.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  36. Rao RGR, Biswal J, Dhamodharan P et al (2016) Identification of potential inhibitors for AIRS from de novo purine biosynthesis pathway through molecular modeling studies–a computational approach. J Biomol Struct Dyn 34:2199–2213. https://doi.org/10.1080/07391102.2015.1110833

    Article  CAS  PubMed  Google Scholar 

  37. Amala M, Rajamanikandan S, Prabhu D et al (2019) Identification of anti-filarial leads against aspartate semialdehyde dehydrogenase of Wolbachiaendosymbiont of Brugiamalayi: combined molecular docking and molecular dynamics approaches. J Biomol Struct Dyn 37:394–410. https://doi.org/10.1080/07391102.2018.1427633

    Article  CAS  PubMed  Google Scholar 

  38. LigPrep (2020) Schrödinger Release 2020-4, Schrödinger, LLC, New York, NY

  39. QikProp (2020) Schrödinger Release 2020-4; Schrödinger, LLC: New York, NY

  40. Surekha K, Nachiappan M, Prabhu D et al (2017) Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches. J Mol Struct 1127:675–688. https://doi.org/10.1016/j.molstruc.2016.08.015

    Article  CAS  Google Scholar 

  41. Rajamanikandan S, Soundarya S, Paramasivam A et al (2021) Computational identification of potential lead molecules targeting rho receptor of Neisseria gonorrhoeae. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1885491

    Article  PubMed  Google Scholar 

  42. Glide (2020) Schrödinger Release 2020-4, Schrödinger, LLC, New York, NY

  43. Prime (2020) Schrödinger Release 2020-4, Schrödinger, LLC, New York, NY

  44. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

  45. Zhan C-G, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195. https://doi.org/10.1021/jp0225774

    Article  CAS  Google Scholar 

  46. Zheng Y, Zheng M, Ling X et al (2013) Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole-benzimidazole derivatives as potent Aurora A/B kinase inhibitors. Bioorg Med Chem Lett 23:3523–3530. https://doi.org/10.1016/j.bmcl.2013.04.039

    Article  CAS  PubMed  Google Scholar 

  47. David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. In: Livesay DR (ed) Protein dynamics: methods and protocols. Humana Press, Totowa, NJ, pp 193–226

    Chapter  Google Scholar 

  48. Hayward S, de Groot BL (2008) Normal modes and essential dynamics. In: Kukol A (ed) Molecular modeling of proteins. Humana Press, Totowa, NJ, pp 89–106

    Chapter  Google Scholar 

  49. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. proteins: structure. Funct Bioinform 17:412–425. https://doi.org/10.1002/prot.340170408

    Article  CAS  Google Scholar 

  50. Wolf A, Kirschner KN (2013) Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. J Mol Model 19:539–549. https://doi.org/10.1007/s00894-012-1563-4

    Article  CAS  PubMed  Google Scholar 

  51. Maddah M, Karami L (2021) An atomistic investigation on the interaction of distamycin A and its derivative with the telomeric G-Quadruplex as anticancer agents by molecular dynamics simulation. Arch Biochem Biophys 701:108797. https://doi.org/10.1016/J.ABB.2021.108797

    Article  CAS  PubMed  Google Scholar 

  52. Grant BJ, Rodrigues APC, ElSawy KM et al (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696. https://doi.org/10.1093/bioinformatics/btl461

    Article  CAS  PubMed  Google Scholar 

  53. Senanayake KS, Söderberg J, Põlajev A et al (2020) The Genome of Setariadigitata: a cattle nematode closely related to human filarial parasites. Genome Biol Evol 12:3971–3976. https://doi.org/10.1093/GBE/EVAA017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perumal ANI, Gunawardene YINS, Dassanayake RS (2016) Setariadigitata in advancing our knowledge of human lymphatic filariasis. J Helminthol 90:129–138. https://doi.org/10.1017/S0022149X15000309

    Article  CAS  PubMed  Google Scholar 

  55. Mathew N, Karunan T, Srinivasan L, Muthuswamy K (2010) Synthesis and screening of substituted 1,4-naphthoquinones (NPQs) as antifilarial agents. Drug Dev Res 71:188–196. https://doi.org/10.1002/DDR.20357

    Article  CAS  Google Scholar 

  56. Nisha M, Kalyanasundaram M, Paily KP et al (2007) In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitol Res 100:575–579. https://doi.org/10.1007/S00436-006-0294-9

    Article  PubMed  Google Scholar 

  57. Senathilake KS, Karunanayake EH, Samarakoon SR et al (2017) Oleanolic acid from antifilarialtriterpenesaponins of Dipterocarpuszeylanicus induces oxidative stress and apoptosis in filarial parasite Setariadigitata in vitro. Exp Parasitol 177:13–21. https://doi.org/10.1016/J.EXPPARA.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  58. Mathew N, Misra-Bhattacharya S, Perumal V, Muthuswamy K (2008) Antifilarial lead molecules isolated from Trachyspermumammi. Molecules 13:2156–2168. https://doi.org/10.3390/MOLECULES13092156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sureshan M, Prabhu D, Kadhirvel S (2022) Computational identification and experimental validation of anti-filarial lead molecules targeting metal binding/substrate channel residues of Cu/Zn SOD1 from Wuchereria bancrofti. J BiomolStructDyn. https://doi.org/10.1080/07391102.2022.2136245

    Article  Google Scholar 

  60. Misra S, Singh LK, Priyanka et al (2015) Synthesis and biological evaluation of 4-oxycoumarin derivatives as a new class of antifilarial agents. Eur J Med Chem 94:211–217. https://doi.org/10.1016/J.EJMECH.2015.02.043

    Article  CAS  PubMed  Google Scholar 

  61. Mannervik B (1985) The isoenzymes of glutathione transferase. Adv Enzymol Related Areas of Mol Biol 57:357–417

    CAS  Google Scholar 

  62. Dirr H, Reinemer P, HUBER R (1994) X-ray crystal structures of cytosolic glutathione S-transferases. Eur J Biochem 220:645–661. https://doi.org/10.1111/j.1432-1033.1994.tb18666.x

    Article  CAS  PubMed  Google Scholar 

  63. Perbandt M, Höppner J, Betzel C et al (2005) Structure of the major cytosolic glutathione S-transferase from the parasitic nematode onchocerca volvulus*. J Biol Chem 280:12630–12636. https://doi.org/10.1074/jbc.M413551200

    Article  CAS  PubMed  Google Scholar 

  64. Shishido Y, Tomoike F, Kimura Y et al (2017) A covalent G-site inhibitor for glutathione S-transferase Pi (GSTP1-1). Chem Commun 53:11138–11141. https://doi.org/10.1039/C7CC05829B

    Article  CAS  Google Scholar 

  65. Mahajan S, Atkins WM (2005) The chemistry and biology of inhibitors and pro-drugs targeted to glutathione S-transferases. Cell Mol Life Sci 62:1221–1233. https://doi.org/10.1007/s00018-005-4524-6

    Article  CAS  PubMed  Google Scholar 

  66. Ertan-Bolelli T, Musdal Y, Bolelli K et al (2014) Synthesis and biological evaluation of 2-Substituted-5-(4-nitrophenylsulfonamido)benzoxazoles as human GST P1–1 inhibitors, and description of the binding site features. Chem Med Chem 9:984–992. https://doi.org/10.1002/cmdc.201400010

    Article  CAS  PubMed  Google Scholar 

  67. Kiss R, Sandor M, Szalai FA (2012) http://Mcule.com: a public web service for drug discovery. J Chem inform 4:17. https://doi.org/10.1186/1758-2946-4-S1-P17

    Article  Google Scholar 

  68. Londhe AM, Gadhe CG, Lim SM, Pae AN (2019) Investigation of molecular details of keap1-nrf2 inhibitors using molecular dynamics and umbrella sampling techniques. Molecules. https://doi.org/10.3390/molecules24224085

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to the management of SASTRA Deemed University for providing all necessary facilities. The authors thankfully acknowledge the high-performance computational facility in the School of Computing at SASTRA Deemed University for providing computational resources to complete the simulation studies. The authors like to thank Dr. U Venkatasubramanian, Associate Professor, and Mr. J Adithyan, Research Scholar, School of Chemical and Biotechnology, SASTRA Deemed University, for their help and suggestion in vitro experiments. The Authors also thank to Dr. R. Velusamy, M. V. Sc., Ph.D., Assistant Professor and Head, Department of Veterinary Parasitology, Veterinary College and Research Institute Orathanadu, Thanjavur, Tamil Nadu, India, for authenticating the filarial worm S. digitata.

Funding

KS thankfully acknowledges DST-SERB CRG for providing financial support in the form of research projects (No: EMR/2017/002841 and No: CVD/2020/000604) and the Central University of Punjab for the Research Seed Money (CUPB/Acad./2022/1194, Dated 19.05.2022) to conduct the study.

Author information

Authors and Affiliations

Authors

Contributions

MS, DP, and SR contributed to data curation, investigation, visualization, validation, and writing–original draft. KS contributed to conceptualization, writing–review and editing, resources, supervision, and funding acquisition. The final version of the manuscript submitted was approved by all authors.

Corresponding author

Correspondence to Kadhirvel Saraboji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4546 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sureshan, M., Prabhu, D., Rajamanikandan, S. et al. Discovery of potent inhibitors targeting Glutathione S-transferase of Wuchereria bancrofti: a step toward the development of effective anti-filariasis drugs. Mol Divers 28, 765–785 (2024). https://doi.org/10.1007/s11030-023-10617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-023-10617-7

Keywords

Navigation