Skip to main content
Log in

Employing of Fe3O4/CuO/ZnO@MWCNT MNCs in the solvent-free synthesis of new cyanopyrroloazepine derivatives and investigation of biological activity

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this research, we synthesized the Fe3O4/CuO/ZnO@MWCNT magnetic nanocomposites using water extract of Petasites hybridus rhizome, and the high performance of synthesized catalyst was confirmed by using in the solvent-free multicomponent reactions of isatoic anhydride, N-methylimidazole, alkyl bromides, activated acetylenic compounds and 2-aminoacetonitrile at ambient temperature for the production of new cyanopyrroloazepine derivatives in high yields. This catalyst could be used several times in these reactions and have main role in the yield of product. The synthesized cyanopyrroloazepines have NH groups in their structure and for this reason have good antioxidant activity. Also, employing Gram-positive and Gram-negative bacteria in the disk diffusion procedure confirmed some cyanopyrroloazepines antimicrobial effect. The results showed that synthesized cyanopyrroloazepine prevented the bacterial growth. This used process for preparation of new cyanopyrroloazepine has some improvements such as low reaction time, product with high yields, simple separation of catalyst and products.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89

    Article  PubMed  CAS  Google Scholar 

  2. Tietze LF, Rackelmann NN (2004) Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl Chem 76(11):1967–1983

    Article  CAS  Google Scholar 

  3. Domling A, Ugi I (2000) Multicomponent reaction with isocyanides. Angew Chem Int Ed 39(18):3168–3210

    Article  CAS  Google Scholar 

  4. Kolb J, Beck B, Almstetter M, Heck S, Herdtweck E, Domling A (2003) New MCRs: the first 4-component reaction leading to 2,4-disubstituted thiazoles. Mol Divers 6(3–4):297–313

    CAS  PubMed  Google Scholar 

  5. Herrera RP, Marqués-López E (2015) Multicomponent reactions: concepts and applications for design and synthesis. Wiley, Hoboken

    Google Scholar 

  6. Zhi S, Ma X, Zhang W (2019) Consecutive multicomponent reactions for the synthesis of complex molecules. Org Biomol Chem 17(33):7632–7650

    Article  CAS  PubMed  Google Scholar 

  7. Ibarra IA, Islas-Jácome A, González-Zamora E (2018) Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem 16(9):1402–1418

    Article  CAS  PubMed  Google Scholar 

  8. Tietze LF, Bsasche C, Gericke KM (2006) Domino reactions in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  9. Weber L, Illgen M, Almstetter M (1999) Discovery of new multi component reactions with combinatorial methods. Synlett 3:366–374

    Article  Google Scholar 

  10. Bon RS, van Vliet B, Sprenkels NE, Schmitz RF, de Kanter FJJ, Stevens CV, Swart M, Bickelhaupt FM, Groen MB, Orru RVA (2005) Multicomponent synthesis of 2-Imidazolines. J Org Chem 70(9):3542–3553

    Article  CAS  PubMed  Google Scholar 

  11. Banfi L, Basso A, Guanti G, Kielland N, Repeto C, Riva R, Ugi I (2007) Multicomponent synthesis of benzoxazinones via tandem Ugi/Mitsunobu reactions: an unexpected cine-substitution. J Org Chem 72:2151–2160

    Article  CAS  PubMed  Google Scholar 

  12. Balalaie S, Abdolmohammadi S, Soleimanifard B (2009) An efficient synthesis of novel hexahydropyrido[2,3-d]pyrimidine derivatives from (arylmethylidene)pyruvic acids (=(3E)-4-aryl-2-oxobut-3-enoic acids) in aqueous media. Helv Chim Acta 92(5):932–936

    Article  CAS  Google Scholar 

  13. Kidwai M, Jain A, Bhardwaj S (2012) Magnetic nanoparticles catalyzed synthesis of diverse N-Heterocycles. Mol Divers 16(1):121–128

    Article  CAS  PubMed  Google Scholar 

  14. Abdolmohammadi S, Balalaie S, Barari M, Rominger F (2013) Three-Component green reaction of arylaldehydes, 6-amino-1,3-dimethyluracil and active methylene compounds catalyzed by Zr(HSO4)4 under solvent-free conditions. Comb Chem High Throughput Screen 16(2):150–159

    CAS  PubMed  Google Scholar 

  15. Abdolmohammadi S (2014) Silica supported Zr(HSO4)4 catalysed solvent-free synthesis of [1]benzopyrano[4,3-b][1]benzopyran-6-ones and xanthenones. Lett Org Chem 11(5):350–355

    Article  CAS  Google Scholar 

  16. Kalaria PN, Karad SC, Raval DK (2018) A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 158(9):917–936

    Article  CAS  PubMed  Google Scholar 

  17. Desai N, Trivedi A, Pandit U, Dodiya A, Rao VK, Desai P (2016) Hybrid bioactive heterocycles as potential antimicrobial agents: a review. Mini Rev Med Chem 16(18):1500–1526

    Article  CAS  PubMed  Google Scholar 

  18. Fouad MM, El-Bendary ER, Suddek GM, Shehata IA, El-Kerdawy MM (2018) Synthesis of novel analogs of thieno[2,3-d]pyrimidin-4(3H)-ones as selective inhibitors of cancer cell Growth. Bioorg Chem 81:587–598

    Article  CAS  PubMed  Google Scholar 

  19. Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR (2015) Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20(9):16852–16891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siddiqui N, Andalip Bawa S, Ali R, Afzal O, Akhtar MJ, Azad B, Kumar R (2011) Antidepressant potential of nitrogen-containing heterocyclic moieties: an updated review. J Pharm Bioallied Sci 3(2):194–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sokolova AS, Baranova DV, Yarovaya OI, Baev DS, Polezhaeva OA, Zybkina AV, Shcherbakov DN, Tolstikova TG, Salakhutdinov NF (2019) Synthesis of (1S)-(+)-camphor-10-sulfonic acid derivatives and investigations in vitro and in silico of their antiviral activity as the inhibitors of fi lovirus infections. Russ Chem Bull 68:1041–1046

    Article  CAS  Google Scholar 

  22. Goel A, Agarwal N, Singh FV, Sharon A, Tiwari P, Dixit M, Pratap R, Srivastava AK, Maulik PR, Ram VJ (2004) Antihyperglycemic activity of 2-methyl-3,4,5-triaryl-1H-pyrroles in SLM and STZ models. Bioorg Med Chem Lett 14(5):1089–1092

    Article  CAS  PubMed  Google Scholar 

  23. Amir M, Javed SA, Kumar H (2007) Pyrimidine as antiinflammatory agent: a review. Indian J Pharm Sci 69(3):337–343

    Article  CAS  Google Scholar 

  24. Li W, Zhao SJ, Gao F, Lv ZS, Tu JY, Xu Z (2018) Synthesis and in vitro anti-tumor, anti-mycobacterial and anti-HIV activities of diethylene-glycol-tethered bis-isatin derivatives. ChemistrySelect 3(36):10250–10254

    Article  CAS  Google Scholar 

  25. Zhao X, Chaudhry ST, Mei J (2017) Heterocyclic building blocks for organic semiconductors. Heterocyclic chemistry in the 21st Century-a Tribute to Alan Katritzky 121:133–171

  26. Khattab TA, Rehan MA (2018) A review on synthesis of nitrogen-containing heterocyclic dyes for textile fibers - Part 2: Fused heterocycles. Egypt J Chem 61(6):989–1018

    Google Scholar 

  27. Lamberth C, Dinges J (2012) Bioactive heterocyclic compound classes: agrochemicals. Wiley-VCH Verlag GmbH & Co, KGaA

    Book  Google Scholar 

  28. Barbero A, Diez-Varga A, Pulido FJ, González-Ortega A (2016) Synthesis of azepane derivatives by Silyl-aza-Prins cyclization of allylsilyl amines: influence of the catalyst in the outcome of the reaction. Org Lett 18(9):1972–1975

    Article  CAS  PubMed  Google Scholar 

  29. Cini E, Bifulco G, Menchi G, Rodriquez M, Taddei M (2012) Synthesis of enantiopure 7-substituted azepane-2-carboxylic acids as templates for conformationally constrained peptidomimetics. Eur J Org Chem 11:2133–2141

    Article  CAS  Google Scholar 

  30. Hameed A, Javed S, Noreen R, Huma T, Iqbal S, Umbreen H, Gulzar T, Farooq T (2017) Facile and green synthesis of saturated cyclic amines. Molecules 22(10):1691/1-1691/22

    Article  CAS  Google Scholar 

  31. Nortcliffe A, Moody CJ (2015) Seven-membered ring scaffolds for drug discovery: Access to functionalised azepanes and oxepanes through diazocarbonyl chemistry. Bioorg Med Chem 23(11):2730–2735

    Article  CAS  PubMed  Google Scholar 

  32. Wishka DG, Bédard M, Brighty KE, Buzon RA, Farley KA, Fichtner MW, Kauffman GS, Kooistra J, Lewis JG, O’Dowd H, Samardjiev IJ, Samas B, Yalamanchi G, Noe MC (2011) An asymmetric synthesis of (2S,5S)-5-substituted azepane-2-carboxylate derivatives. J Org Chem 76(6):1937–1940

    Article  CAS  PubMed  Google Scholar 

  33. René O, Stepek IA, Gobbi A, Fauber BP, Gaines S (2015) Palladium-catalyzed ring expansion of spirocyclopropanes to form caprolactams and azepanes. J Org Chem 80(20):10218–10225

    Article  PubMed  CAS  Google Scholar 

  34. Drouillat B, Dorogan IV, Kletskii M, Burov ON, Couty F (2016) Competitive ring expansion of azetidines into pyrrolidines and/or azepanes. J Org Chem 81(15):6677–6685

  35. Choi J, Yadav NN, Ha HJ (2017) Preparation of a stable bicyclic aziridinium ion and its ring expansion toward piperidines and azepanes. Asian J Org Chem 6(9):1292–1307

    Article  CAS  Google Scholar 

  36. Yarmoliuk DV, Serhiichuk D, Smyrnov V, Tymtsunik AV, Hryshchuk OV, Kuchkovska Y, Grygorenko OO (2018) Synthesis of azabicyclo[n.1.0]alkane-derived bifunctional building blocks via the Corey-Chaykovsky cyclopropanation. Tetrahedron Lett 59(52):4611–4615

    Article  CAS  Google Scholar 

  37. Zhou J, Yeung YY (2014) N-Bromosuccinimide-induced aminocyclization–aziridine ring-expansion cascade: an asymmetric and highly stereoselective approach toward the synthesis of azepa. Org Lett 16(8):2134–2137

    Article  CAS  PubMed  Google Scholar 

  38. Gholap SS (2016) Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 110(3):13–31

    Article  CAS  PubMed  Google Scholar 

  39. Fan H, Peng J, Hamann MT, Hu JF (2008) Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem Rev 108(1):264–287

    Article  CAS  PubMed  Google Scholar 

  40. Bürli RW, McMinn D, Kaizerman JA, Hu W, Ge Y, Pack Q, Jiang V, Gross M, Garcia M, Tanaka R, Moser HE (2004) DNA binding ligands targeting drug-resistant Gram-positive bacteria. Part 1: Internal benzimidazole derivatives. Bioorg Med Chem Lett 14(5):1253–1257

    Article  PubMed  CAS  Google Scholar 

  41. Narule MN, Gaidhane MK, Gaidhane PK (2013) Synthesis, characterization, biologically and antioxidant active of some 2-substitued 3, 5-dimethyl-4-ethoxy carbonyl pyrrole derivatives. J Pharm Res 6(6):626–632

    CAS  Google Scholar 

  42. Battilocchio C, Poce G, Alfonso S, Porretta GC, Consalvi S, Sautebin L, Pace S, Rossi A, Ghelardini C, Mannelli LDC, Schenone S (2013) A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorg Med Chem 21(13):3695–3701

    Article  CAS  PubMed  Google Scholar 

  43. Joshi SD, Dixit SR, Kirankumar MN, Aminabhavi TM, Raju KVSN, Narayan R, Lherbet C, Yang KS (2015) Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur J Med Chem 107:133–152

    Article  PubMed  CAS  Google Scholar 

  44. Kamal A, Ramakrishna G, Nayak VL, Raju P, Rao AS, Viswanath A, Vishnuvardhan MVPS, Ramakrishna S, Srinivas G (2012) Design and synthesis of benzo[c, d]indolone-pyrrolobenzodiazepine conjugates as potential anticancer agents. Bioorg Med Chem 20(2):789–800

    Article  CAS  PubMed  Google Scholar 

  45. Sahay R, Sundaramurthy J, Suresh Kumar P, Thavasi V, Mhaisalkar SG, Ramakrishna SJ (2012) Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. Solid State Chem 186:261–267

    Article  CAS  Google Scholar 

  46. Zhang BT, Zheng X, Li HF, Lin JM (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17

    Article  CAS  PubMed  Google Scholar 

  47. Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100(1–2):79–94

    Article  CAS  Google Scholar 

  48. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 43(10):3480–3524

    Article  CAS  PubMed  Google Scholar 

  49. Dastan A, Kulkarnia A, Torok B (2012) Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem 14(1):17–37

    Article  CAS  Google Scholar 

  50. Jabłonska M, Palkovits R (2016) Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides. Catal Sci Technol 6:49–72

    Article  Google Scholar 

  51. Shi J (2013) On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 113(3):2139–2181

    Article  CAS  PubMed  Google Scholar 

  52. Lin-Bing S, Xiao-Qin L, Hong-Cai Z (2015) Design and fabrication of mesoporous heterogeneous basic catalysts. Chem Soc Rev 44(15):5092–5147

    Article  Google Scholar 

  53. Zhang Q, Vigier KDV, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146

    Article  CAS  PubMed  Google Scholar 

  54. Kalantari E, Khalilzadeh MA, Zareyee D, Shokouhimehr M (2020) Catalytic degradation of organic dyes using green synthesized Fe3O4-cellulose-copper nanocomposites. J Mol Struc 1218:128488

    Article  CAS  Google Scholar 

  55. Khalilzadeh MA, Hosseini S, Rad AS, Venditti RA (2021) Synthesis of grafted nanofibrillated cellulose-based hydrogel and study of its thermodynamic, kinetic, and electronic properties. J Agric Food Chem 68(32):8710–8719

    Article  CAS  Google Scholar 

  56. Brauch S, van Berkel SS, Westermann W (2013) Higher-order multicomponent reactions: beyond four reactants. Chem Soc Rev 42(12):4948–4962

    Article  CAS  PubMed  Google Scholar 

  57. Cho HY, Morken JP (2014) Catalytic bismetallative multicomponent coupling reactions: scope, applications, and mechanisms. Chem Soc Rev 43(13):4368–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eftekhari-Sis B, Zirak M, Akbari A (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem Rev 113(5):2958–3043

    Article  CAS  PubMed  Google Scholar 

  59. Xin T, Ma M, Zhang H, Gu J, Wang S, Liu M, Zhang Q (2014) A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl Surf Sci 288:51–59

    Article  CAS  Google Scholar 

  60. Jing J, Li J, Feng J, Li W, Yu WW (2013) Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts. Chem Eng J 219:355–360

    Article  CAS  Google Scholar 

  61. Mandel K, Hutter F, Gellermann C, Sextl G (2013) Reusable superparamagnetic nanocomposite particles for magnetic separation of iron hydroxide precipitates to remove and recover heavy metal ions from aqueous solutions. Sep Purif Technol 109:144–147

  62. Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radical Res 31(4):261–272

    Article  CAS  Google Scholar 

  63. Babizhayev MA, Deyev AI, Yermakovea VN, Brikman IV, Bours J (2004) Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D 5(3):125–139

    Article  CAS  PubMed  Google Scholar 

  64. Liu L, Meydani M (2002) Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr Rev 60(11):368–371

    Article  PubMed  Google Scholar 

  65. Abdolmohammadi S (2013) ZnO nanoparticles-catalyzed cyclocondensation reaction of arylmethylidenepyruvic acids with 6-aminouracils. Comb Chem High Throughput Screen 16(1):32–36

    Article  CAS  PubMed  Google Scholar 

  66. Abdolmohammadi S (2013) Solvent-free synthesis of 4,5-dihydropyrano[c]chromene derivatives over TiO2 nanoparticles as an economical and efficient catalyst. Curr Catal 2(2):116–121

    Article  CAS  Google Scholar 

  67. Abdolmohammadi S, Mohammadnejad M, Shafaei F (2013) TiO2 nanoparticles as an efficient catalyst for the one-pot preparation of tetrahydrobenzo[c]acridines in aqueous media. Z Naturforsch B 68(4):362–366

    Article  CAS  Google Scholar 

  68. Abdolmohammadi S, Afsharpour M, Keshavarz-Fatideh S (2014) An efficient green synthesis of 3-amino-1H-chromenes catalysed by ZnO nanoparticles thin-film. S Afr J Chem 67(1):203–210

    Google Scholar 

  69. Rabiei A, Abdolmohammadi S, Shafaei F (2017) A green approach for an efficient preparation of 2,4-diamino-6-aryl-5-pyrimidinecarbonitriles using a TiO2/SiO2 nanocomposite catalyst under solvent-free conditions. Z Naturforsch B 72(4):241–247

    Article  CAS  Google Scholar 

  70. Khalilian S, Abdolmohammadi S, Nematolahi F (2017) An eco-friendly and highly efficient synthesis of pyrimidinones using a TiO2-CNTs nanocomposite catalyst. Lett Org Chem 14(5):361–367

    Article  CAS  Google Scholar 

  71. Samani A, Abdolmohammadi S, Otaredi-Kashani A (2018) Green synthesis of xanthenone derivatives in aqueous media using TiO2-CNTs nanocomposite as an eco-friendly and re-usable catalyst. Comb Chem High Throughput Screen 21(2):111–116

    Article  CAS  PubMed  Google Scholar 

  72. Abdolmohammadi S (2018) TiO2 NPs-coated carbone nanotubes as a green and efficient catalyst for the synthesis of [1]benzopyrano[b][1]benzopyranones and xanthenols in water. Comb Chem High Throughput Screen 21(8):594–601

    Article  CAS  PubMed  Google Scholar 

  73. Fakheri-Vayeghan S, Abdolmohammadi S, Kia-Kojoori R (2018) An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst. Z Naturforsch B 73(8):545–551

    Article  CAS  Google Scholar 

  74. Sadegh-Samiei S, Abdolmohammadi S (2018) TiO2-SiO2 nanocomposite promoted efficient cyclocondensation reaction of arylmethylidenepyruvic acids with dimedone in aqueous media. J Chin Chem Soc 65(10):1155–1159

    Article  CAS  Google Scholar 

  75. Sadegh-Samiei S, Abdolmohammadi S (2018) Efficient synthesis of pyrido[2,3-d]pyrimidine-7-carboxylic acids catalyzed by a TiO2-SiO2 nanocomposite in aqueous media at room temperature. Z Naturforsch B 73(9):641–645

    Article  CAS  Google Scholar 

  76. Abdolmohammadi S, Hossaini Z (2019) Fe3O4 MNPs as a green catalyst for syntheses of functionalized [1,3]-oxazole and 1H-pyrrolo-[1,3]-oxazole derivatives and evaluation of their antioxidant activity. Mol Divers 23(4):885–896

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Su P, Abdolmohammadi S, Vessally S (2019) A walk around the application of nanocatalysts for cross dehydrogenative coupling of C-H bonds. RSC Adv 9(71):41684–41702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abdolmohammadi S, Mirza B, Vessally E (2019) Immobilized TiO2 nanoparticles on carbon nanotubes: an efficient heterogeneous catalyst for the synthesis of chromeno[b]pyridine derivatives under ultrasonic irradiation. RSC Adv 9(71):41868–41876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abdolmohammadi S, Rasouli Nasrabadi SR, Dabiri MR, Banihashemi Jozdani SM (2020) TiO2 nanoparticles immobilized on carbon nanotubes: An efficient heterogeneous catalyst in cyclocondensation reaction of isatins with malononitrile and 4-hydroxycoumarin or 3,4-methylenedioxyphenol under mild reaction conditions. Appl Organomet Chem 34(4):e5462

    Article  CAS  Google Scholar 

  80. Dahi-Azar S, Abdolmohammadi S, Mokhtari J (2020) Water mediated economical synthesis of chromeno[b]pyridin-3-yl cyanides using cadmium oxide nanoparticles as a highly efficient catalyst. Can J Chem 98(8):415–420

    Article  CAS  Google Scholar 

  81. Asef Hajipour Najar A, Hossaini Z, Abdolmohammadi S, Zareyee D (2020) ZnO-nanorods promoted synthesis of α-amino nitrile benzofuran derivatives using one-pot multicomponent reaction of isocyanides. Comb Chem High Throughput Screen 23(4):345–355

    Article  CAS  Google Scholar 

  82. Chaghari-Farahani F, Abdolmohammadi S, Kia-Kojoori R (2020) PANI-Fe3O4@ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Adv 10(26):15614–15621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ebrahimi M, Abdolmohammadi S, Kia-Kojoori R (2020) Ultrasonic accelerated efficient synthesis of aminobenzochromenes using Ag2Cr2O7 nanoparticles as a reusable heterogeneous catalyst. J Heterocycl Chem 57(4):1875–1881

    Article  CAS  Google Scholar 

  84. Saeedi B, Abdolmohammadi S, MirJafari Z, Kia-Kojoori R (2020) Nickel(II) chromite nanoparticles promoted efficient synthesis of novel [1]benzopyrano[4,3-b]pyridines in aqueous media. Monatsh Chem 151(5):773–780

    Article  CAS  Google Scholar 

  85. Abdolmohammadi S, Afsharpour M (2021) An ultrasound assisted cyclocondensation reaction for the efficient synthesis of [1]benzopyranopyrido[d]pyrimidines using porous graphene/MoO3. Appl Organomet Chem 35(1):e6028

    Article  CAS  Google Scholar 

  86. Abdolmohammadi S, Shariati S, Mirza B (2021) Ultrasound promoted and Kit-6 mesoporous silica supported Fe3O4 MNPs catalyzed cyclocondensation reaction of 4-hydroxycoumarin, 3,4-methylenedioxyphenol and aromatic aldehydes. Appl Organomet Chem 35(3):e6117

    Article  CAS  Google Scholar 

  87. Saeedi B, Abdolmohammadi S, MirJafari Z, Kia-Kojoori R (2021) Nickel(II) chromite nanoparticles: an eco-friendly and reusable catalyst for synthesis of 2,4-diamino-6-aryl-pyrimidine-5-yl cyanides under ultrasonic radiation. Comb Chem High Throughput Screen 24(3):455–464

    Article  CAS  PubMed  Google Scholar 

  88. Sabet Mehr N, Abdolmohammadi S, Afsharpour M (2021) Activated carbon/MoO3: efficient catalyst for green synthesis of chromeno[d]pyrimidinediones and xanthenones. Comb Chem High Throughput Screen 24(5):683–694

    Article  CAS  Google Scholar 

  89. Dahi-Azar S, Abdolmohammadi S, Mokhtari J (2021) Ethanol-drop grinding approach: cadmium oxide nanoparticles catalyzed synthesis of [1,3]dioxolo[g][1]benzopyran-6-carboxylic acids and pyrido[d]pyrimidine-7-carboxylic acids. Comb Chem High Throughput Screen 24(1):139–147

    Article  CAS  PubMed  Google Scholar 

  90. Saeedi B, Abdolmohammadi S, MirJafari Z, Kia-Kojoori R (2022) An Efficient synthesis of pyrano[c]chromenediones and [1,3]dioxolo[g]chromeneones catalyzed by nickel(II) chromite nanoparticles through a three-component domino reaction. Comb Chem High Throughput Screen. https://doi.org/10.2174/1386207324666210118094712

  91. Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radical Res 31(4):261–272

  92. Ahmadi F, Kadivar M, Shahedi M (2007) Antioxidant activity of Kelussia odoratissima Mozaff in model and food systems. Food Chem 105(1):57–64

    Article  CAS  Google Scholar 

  93. Bidchol AM (2011) Free Radical Scavenging Activity of Aqueous and Ethanolic. Food Bioprocess Tech 4(7):1137–1143

    Article  Google Scholar 

  94. Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L .extracts. J Agric Food Chem 49(8):4083–4089

    Article  CAS  PubMed  Google Scholar 

  95. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40(6):945–948

    Article  CAS  Google Scholar 

  96. Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42(3):629–632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Research Council of Islamic Azad University of East Tehran Branch

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kia-Kojoori.

Ethics declarations

Conflict of interest

This manuscript has not any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare Davijani, N., Kia-Kojoori, R., Abdolmohammadi, S. et al. Employing of Fe3O4/CuO/ZnO@MWCNT MNCs in the solvent-free synthesis of new cyanopyrroloazepine derivatives and investigation of biological activity. Mol Divers 26, 2121–2134 (2022). https://doi.org/10.1007/s11030-021-10319-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10319-y

Keywords

Navigation