Skip to main content
Log in

Evaluation of the target-specific therapeutic potential of herbal compounds for the treatment of cancer

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cancer is among one of the most fatal diseases leading to millions of death around the globe. Chemotherapy is the most popular conventional approach for the treatment of cancer. However, this is usually associated with various side effects and puts the patients under extreme physical and mental stress. Besides, there are increasing concerns about drug resistance. Thus, to surmount these limitations, there is a need to explore some alternative treatments. Studies related to plant-derived compounds are crucial in the search for safer and more efficient treatments. Plants and their associated secondary metabolites have been a revolutionary approach in the field of cancer treatment, as they give answers to almost all the constraints faced by synthetic drugs. Various plants and associated secondary metabolites display a great prospective as cytotoxic anticancer agents due to their specific interference with validated drug targets, such as inhibitors of mitosis, topoisomerase I and II inhibitor, DNA interactive agent, protein kinase inhibitors, inhibitors of DNA synthesis. In this review, the therapeutic potential of various natural compounds and their derivatives are presented based on their molecular targets. These herbal compounds and their derivatives could provide a rich resource for novel anticancer drug development.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.​21492

    Article  PubMed  Google Scholar 

  2. Malarkey DE, Maronpot RR (2017) Carcinogenesis. In: Wexler PE (ed) Encyclopedia of toxicology, 2nd edn. Elsevier, New York., pp 445–466

    Google Scholar 

  3. Abbas Z, Rehman S (2018) An overview of cancer treatment modalities. Neoplasm 1:139–157. https://doi.org/10.5772/intechopen.76558

    Article  CAS  Google Scholar 

  4. Aung TN, Qu Z, Kortschak RD, Adelson DL (2017) Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci. https://doi.org/10.3390/ijms18030656

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thakore P, Mani RK, Kavitha SJ (2012) A brief review of plants having anti-cancer property. Int J Pharm Res Dev 3:129–136

    Google Scholar 

  6. Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, Abiodun OO, Batbaatar A, Li Z, Song D, Xiong Q, Ullah R, Khan S, Basnet BB, Kumar B, Islam R, Adnan M (2017) A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 31(2):202–264. https://doi.org/10.1002/ptr.5751

    Article  PubMed  Google Scholar 

  7. Chaudhary A, Singh N (2011) Contribution of world health organization in the global acceptance of Ayurveda. J Ayurveda Integr Med 2(4):179–186. https://doi.org/10.4103/0975-9476.90769

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79. https://doi.org/10.1016/j.jep.2005.05.011

    Article  CAS  PubMed  Google Scholar 

  9. Singh S, Sharma B, Kanwar SS, Kumar A (2016) Lead phytochemicals for anticancer drug development. Front Plant Sci 7:1667. https://doi.org/10.3389/fpls.2016.01667

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chaaban S, Brouhard GJ (2017) A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell 28(22):2924–2931. https://doi.org/10.1091/mbc.e16-05-0271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greenwell M, Rahman P (2015) Medicinal plants: their use in anticancer treatment. Int. J. Pharm. Sci. Research 6(10):4103. https://doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12

    Article  CAS  Google Scholar 

  12. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O (2020) Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 10:1614. https://doi.org/10.3389/fphar.2019.01614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8(12):1467–1486. https://doi.org/10.2174/0929867013372094

    Article  CAS  PubMed  Google Scholar 

  14. Xie S, Zhou J (2017) Harnessing plant biodiversity for the discovery of novel anticancer drugs targeting microtubules. Front Plant Sci 8:720. https://doi.org/10.3389/fpls.2017.00720

    Article  PubMed  PubMed Central  Google Scholar 

  15. Da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1(4):364–369. https://doi.org/10.1016/S1471-4892(01)00063-7

    Article  PubMed  Google Scholar 

  16. Lichota A, Gwozdzinski K (2018) Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci 19(11):3533. https://doi.org/10.3390/ijms19113533

    Article  CAS  PubMed Central  Google Scholar 

  17. Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC (2019) Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules. https://doi.org/10.3390/biom9110679

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pal SK, Twardowski P, Sartor O (2010) Critical appraisal of cabazitaxel in the management of advanced prostate cancer. Clin Interv Aging 5:395–402. https://doi.org/10.2147/CIA.S14570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moudi M, Go R, Yien CY, Nazre M (2013) Vinca alkaloids. Int J Prev Med 4(11):1231–1235

    PubMed  PubMed Central  Google Scholar 

  20. Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? an overview. Curr Cancer Drug Targets 7(8):730–742. https://doi.org/10.2174/156800907783220417

    Article  CAS  PubMed  Google Scholar 

  21. Zheng J, Deng L, Chen M, Xiao X, Xiao S, Guo C, Xiao G, Bai L, Ye W, Zhang D (2013) Elaboration of thorough simplified vinca alkaloids as antimitotic agents based on pharmacophore similarity. Eur J Med Chem 65:158–167. https://doi.org/10.1016/j.ejmech.2013.04.057

    Article  CAS  PubMed  Google Scholar 

  22. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413. https://doi.org/10.1146/annurev.biochem.70.1.369

    Article  CAS  PubMed  Google Scholar 

  23. Kumar Jain C, Kumar Majumder H, Roychoudhury S (2017) Natural compounds as anticancer agents targeting DNA topoisomerases. Curr Genom 18(1):75–92. https://doi.org/10.2174/1389202917666160808125213

    Article  CAS  Google Scholar 

  24. Li T-K, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Ann Rev Pharmacol Toxicol 41(1):53–77. https://doi.org/10.1146/annurev.pharmtox.41.1.53

    Article  Google Scholar 

  25. Jang HJ, Hong EM, Jang J, Choi JE, Park SW, Byun HW, Koh DH, Choi MH, Kae SH, Lee J (2016) Synergistic effects of simvastatin and irinotecan against colon cancer cells with or without irinotecan resistance. Gastroenterol Res Pract. https://doi.org/10.1155/2016/7891374

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bhagavan NV, Ha C-E, Bhagavan NV, Ha C-E (2011) Chapter 21 - structure and properties of DNA. Essentials of medical biochemistry. Academic Press, San Diego, pp 275–286

    Chapter  Google Scholar 

  27. Kizek R, Adam V, Hrabeta J, Eckschlager T, Smutny S, Burda JV, Frei E, Stiborova M (2012) Anthracyclines and ellipticines as DNA-damaging anticancer drugs: recent advances. Pharmacol Ther 133(1):26–39. https://doi.org/10.1016/j.pharmthera.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  28. Isah T (2016) Anticancer alkaloids from trees: development into drugs. Pharmacogn Rev 10(20):90–99. https://doi.org/10.4103/0973-7847.194047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stiborová M, Breuer A, Aimová D, Stiborová-Rupertová M, Wiessler M, Frei E (2003) DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P postlabeling. Int J Cancer 107(6):885–890. https://doi.org/10.1002/ijc.11511

    Article  CAS  PubMed  Google Scholar 

  30. Kumar B, Singh S, Skvortsova I, Kumar V (2017) Promising targets in anti-cancer drug development: recent updates. Curr Med Chem 24(42):4729–4752. https://doi.org/10.2174/0929867324666170331123648

    Article  CAS  PubMed  Google Scholar 

  31. Tiash S, Chowdhury EH (2015) Growth factor receptors: promising drug targets in cancer. J Cancer Metastasis Treat 1:190–200. https://doi.org/10.4103/2394-4722.163151

    Article  CAS  Google Scholar 

  32. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, Ma H, Wei D, Sun S (2020) The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 80:106210. https://doi.org/10.1016/j.intimp.2020.106210

    Article  CAS  PubMed  Google Scholar 

  33. Saha A, Blando J, Silver E, Beltran L, Sessler J, DiGiovanni J (2014) 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-kappaB signaling. Cancer Prev Res (Phila) 7(6):627–638. https://doi.org/10.1158/1940-6207.capr-13-0420

    Article  CAS  Google Scholar 

  34. Zhu Y, Warin RF, Soroka DN, Chen H, Sang S (2013) Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation. PLoS ONE 8(1):e54677. https://doi.org/10.1371/journal.pone.0054677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palko-Labuz A, Sroda-Pomianek K, Uryga A, Kostrzewa-Suslow E, Michalak K (2017) Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and in drug-resistant LoVo/Dx cells. Biomed Pharmacother 88:232–241. https://doi.org/10.1016/j.biopha.2017.01.053

    Article  CAS  PubMed  Google Scholar 

  36. Yan W, Ma X, Zhao X, Zhang S (2018) Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des Dev Ther 12:3961–3972. https://doi.org/10.2147/DDDT.S181939

    Article  CAS  Google Scholar 

  37. Lin W, Zhong M, Yin H, Chen Y, Cao Q, Wang C, Ling C (2016) Emodin induces hepatocellular carcinoma cell apoptosis through MAPK and PI3K/AKT signaling pathways in vitro and in vivo. Oncol Rep 36(2):961–967. https://doi.org/10.3892/or.2016.4861

    Article  CAS  PubMed  Google Scholar 

  38. Koli P, Indurthi HK, Sharma DK (2020) Anticancer activity of 3, 3′-diindolylmethane and the molecular mechanism involved in various cancer cell lines. ChemistrySelect 5(37):11540–11548. https://doi.org/10.1002/slct.202003137

    Article  CAS  Google Scholar 

  39. Le HT, Schaldach CM, Firestone GL, Bjeldanes LF (2003) Plant-derived 3, 3’-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem 278(23):21136–21145. https://doi.org/10.1074/jbc.M300588200

    Article  CAS  PubMed  Google Scholar 

  40. Hoshyar R, Mollaei H (2017) A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J Pharm Pharmacol 69(11):1419–1427. https://doi.org/10.1111/jphp.12776

    Article  CAS  PubMed  Google Scholar 

  41. Patel S, Sarwat M, Khan TH (2017) Mechanism behind the anti-tumour potential of saffron (Crocus sativus L.): the molecular perspective. Crit Rev Oncol Hematol 115:27–35. https://doi.org/10.1016/j.critrevonc.2017.04.010

    Article  PubMed  Google Scholar 

  42. Chang HC, Chen ST, Chien SY, Kuo SJ, Tsai HT, Chen DR (2011) Capsaicin may induce breast cancer cell death through apoptosis-inducing factor involving mitochondrial dysfunction. Hum Exp Toxicol 30(10):1657–1665. https://doi.org/10.1177/0960327110396530

    Article  CAS  PubMed  Google Scholar 

  43. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93. https://doi.org/10.1016/j.mam.2005.07.008

    Article  CAS  Google Scholar 

  44. Kang SY, Seeram NP, Nair MG, Bourquin LD (2003) Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett 194(1):13–19. https://doi.org/10.1016/S0304-3940(02)00583-9

    Article  CAS  PubMed  Google Scholar 

  45. Kim JK, Kim Y, Na KM, Surh YJ, Kim TY (2007) [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic Res 41(5):603–614. https://doi.org/10.1080/10715760701209896

    Article  CAS  PubMed  Google Scholar 

  46. Manju K, Jat RK, Anju G (2012) A review on medicinal plants used as a source of anticancer agents. Int J Drug Res Tech 2(2):177–183

    Google Scholar 

  47. Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, Brenner DE, Steward WP, Gescher AJ, Brown K (2010) Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 70(19):7392–7399. https://doi.org/10.1158/0008-5472.CAN-10-2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M (2016) Anticancer molecular mechanisms of resveratrol. Front Nutr 3:8. https://doi.org/10.3389/fnut.2016.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK (2007) Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett 245(1–2):232–241. https://doi.org/10.1016/j.canlet.2006.01.027

    Article  CAS  PubMed  Google Scholar 

  50. Stuart EC, Scandlyn MJ, Rosengren RJ (2006) Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci 79(25):2329–2336. https://doi.org/10.1016/j.lfs.2006.07.036

    Article  CAS  PubMed  Google Scholar 

  51. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681. https://doi.org/10.1091/mbc.e14-04-0916

    Article  PubMed  PubMed Central  Google Scholar 

  52. Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M, Ventrella G (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50(1):3–14

    CAS  Google Scholar 

  53. Taşkın-Tok T, Gowder S (2014) Anticancer drug-friend or foe. Pharmacol Ther. https://doi.org/10.5772/58552

    Article  Google Scholar 

  54. Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 7(4):597–615. https://doi.org/10.2217/nnm.12.22

    Article  CAS  Google Scholar 

  55. Lila MA, Raskin I (2005) Health-related interactions of phytochemicals. J Food Sci 70(1):R20–R27. https://doi.org/10.1111/j.1365-2621.2005.tb09054.x

    Article  CAS  Google Scholar 

  56. Schmidt B, Ribnicky DM, Poulev A, Logendra S, Cefalu WT, Raskin I (2008) A natural history of botanical therapeutics. Metabolism 57:S3–S9. https://doi.org/10.1016/j.metabol.2008.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Waterhouse DN, Gelmon KA, Klasa R, Chi K, Huntsman D, Ramsay E, Wasan E, Edwards L, Tucker C, Zastre J, Wang YZ, Yapp D, Dragowska W, Dunn S, Dedhar S, Bally MB (2006) Development and assessment of conventional and targeted drug combinations for use in the treatment of aggressive breast cancers. Curr Cancer Drug Targets 6(6):455–489. https://doi.org/10.2174/156800906778194586

    Article  CAS  PubMed  Google Scholar 

  58. HemaIswarya S, Doble M (2006) Potential synergism of natural products in the treatment of cancer. Phytother Res 20(4):239–249. https://doi.org/10.1002/ptr.1841

    Article  CAS  PubMed  Google Scholar 

  59. Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(3 Suppl):517S-520S. https://doi.org/10.1093/ajcn/78.3.517S

    Article  CAS  PubMed  Google Scholar 

  60. Pezzani R, Salehi B, Vitalini S, Iriti M, Zuñiga FA, Sharifi-Rad J, Martorell M, Martins N (2019) Synergistic effects of plant derivatives and conventional chemotherapeutic agents: an update on the cancer perspective. Medicina 55(4):110. https://doi.org/10.3390/medicina55040110

    Article  PubMed Central  Google Scholar 

  61. Nagaprashantha LD, Vatsyayan R, Singhal J, Fast S, Roby R, Awasthi S, Singhal SS (2011) Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem Pharmacol 82(9):1100–1109. https://doi.org/10.1016/j.bcp.2011.07.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang A, Sun H, Yuan Y, Sun W, Jiao G, Wang X (2011) An in vivo analysis of the therapeutic and synergistic properties of Chinese medicinal formula Yin-Chen-Hao-Tang based on its active constituents. Fitoterapia 82(8):1160–1168. https://doi.org/10.1016/j.fitote.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA (2021) Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 14(2):157. https://doi.org/10.3390/ph14020157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu S-H, Cheng Y-C (2012) Old formula, new Rx: the journey of PHY906 as cancer adjuvant therapy. J Ethnopharmacol 140(3):614–623. https://doi.org/10.1016/j.jep.2012.01.047

    Article  CAS  PubMed  Google Scholar 

  65. Krause J, Tobin G (2013) Discovery, development, and regulation of natural products. Using Old Solut New Probl-Nat Drug Discov 21st Century. https://doi.org/10.5772/56424

    Article  Google Scholar 

  66. Ertl P, Schuffenhauer A (2008) Cheminformatics analysis of natural products: lessons from nature inspiring the design of new drugs. Prog Drug Res 66(217):219–235. https://doi.org/10.1007/978-3-7643-8595-8_4

    Article  Google Scholar 

  67. Rouhi AM (2003) Rediscovering natural products. Chem Eng News 81(41):77–91. https://doi.org/10.1021/cen-v081n041.p077

    Article  Google Scholar 

  68. Rouhi AM (2003) Moving beyond natural products. Chem Eng News 81(41):104–104

    Article  Google Scholar 

  69. Mosihuzzaman M, Choudhary MI (2008) Protocols on safety, efficacy, standardization, and documentation of herbal medicine (IUPAC Technical Report). Pure Appl Chem 80(10):2195–2230. https://doi.org/10.1351/pac200880102195

    Article  CAS  Google Scholar 

  70. Vrignaud P, Semiond D, Lejeune P, Bouchard H, Calvet L, Combeau C, Riou JF, Commercon A, Lavelle F, Bissery MC (2013) Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin Cancer Res 19(11):2973–2983. https://doi.org/10.1158/1078-0432.CCR-12-3146

    Article  CAS  PubMed  Google Scholar 

  71. Özdemir F, Akalın G, Şen M, Önder NI, Işcan A, Kutlu HM, Incesu Z (2014) Towards Novel anti-tumor strategies for hepatic cancer: ɛ-Viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 Cellsn HepG2 cells. OMICS J Integr Biol 18(5):324–334. https://doi.org/10.1089/omi.2013.0045

    Article  CAS  Google Scholar 

  72. Pavillard V, Agostini C, Richard S, Charasson V, Montaudon D, Robert J (2002) Determinants of the cytotoxicity of irinotecan in two human colorectal tumor cell lines. Cancer Chemother Pharmacol 49(4):329–335. https://doi.org/10.1007/s00280-001-0416-0

    Article  CAS  PubMed  Google Scholar 

  73. Timur M, Akbas SH, Ozben T (2005) The effect of Topotecan on oxidative stress in MCF-7 human breast cancer cell line. Acta Biochim Pol 52(4):897–902. https://doi.org/10.18388/abp.2005_3404

    Article  CAS  PubMed  Google Scholar 

  74. Oberhoff C, Kieback DG, Wurstlein R, Deertz H, Sehouli J, van Soest C, Hilfrich J, Mesrogli M, von Minckwitz G, Staab HJ, Schindler AE (2001) Topotecan chemotherapy in patients with breast cancer and brain metastases: results of a pilot study. Onkologie 24(3):256–260. https://doi.org/10.1159/000055088

    Article  CAS  PubMed  Google Scholar 

  75. Rezonja R, Knez L, Cufer T, Mrhar A (2013) Oral treatment with etoposide in small cell lung cancer - dilemmas and solutions. Radiol Oncol 47(1):1–13. https://doi.org/10.2478/raon-2013-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heath EI, Heilbrun LK, Li J, Vaishampayan U, Harper F, Pemberton P, Sarkar FH (2010) A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3’- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Trans Res 2(4):402–411

    CAS  Google Scholar 

  77. Sahin K, Tuzcu M, Sahin N, Akdemir F, Ozercan I, Bayraktar S, Kucuk O (2011) Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats. Nutr Cancer 63(8):1279–1286. https://doi.org/10.1080/01635581.2011.606955

    Article  CAS  PubMed  Google Scholar 

  78. Ansari MS, Gupta NP (2004) Lycopene: a novel drug therapy in hormone refractory metastatic prostate cancer. Urol Oncol 22(5):415–420. https://doi.org/10.1016/j.urolonc.2004.05.009Fc

    Article  CAS  PubMed  Google Scholar 

  79. Thummuri D, Jeengar MK, Shrivastava S, Areti A, Yerra VG, Yamjala S, Komirishetty P, Naidu VGM, Kumar A, Sistla R (2014) Boswellia ovalifoliolata abrogates ROS mediated NF-NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells. Environ Toxicol Pharmacol 38(1):58–70. https://doi.org/10.1016/j.etap.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  80. Sun Y, Xu HJ, Zhao YX, Wang LZ, Sun LR, Wang Z, Sun XF (2013) Crocin exhibits antitumor effects on human leukemia HL-60 cells in vitro and in vivo. Evid Based Complement Alternat Med 2013:690164. https://doi.org/10.1155/2013/690164

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13(12):1465–1478. https://doi.org/10.1007/s10495-008-0278-6

    Article  CAS  PubMed  Google Scholar 

  82. Singh SK, Banerjee S, Acosta EP, Lillard JW, Singh R (2017) Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget 8(10):17216–17228. https://doi.org/10.18632/oncotarget.15303

    Article  PubMed  PubMed Central  Google Scholar 

  83. Paller CJ, Rudek MA, Zhou XC, Wagner WD, Hudson TS, Anders N, Hammers HJ, Dowling D, King S, Antonarakis ES, Drake CG, Eisenberger MA, Denmeade SR, Rosner GL, Carducci MA (2015) A phase I study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: safety, tolerability, and dose determination. Prostate 75(14):1518–1525. https://doi.org/10.1002/pros.23024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ryan JL, Heckler CE, Ling M, Katz A, Williams JP, Pentland AP, Morrow GR (2013) Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res 180(1):34–43. https://doi.org/10.1667/RR3255.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Zoology, Kumaun University SSJ Campus, Almora (Uttarakhand), India, for providing the facility for this work. This work is supported by DSTFIST Grant SR/FST/LS- I/2018/131 to Department of Zoology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Samant.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upreti, S., Pandey, S.C., Bisht, I. et al. Evaluation of the target-specific therapeutic potential of herbal compounds for the treatment of cancer. Mol Divers 26, 1823–1835 (2022). https://doi.org/10.1007/s11030-021-10271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10271-x

Keywords

Navigation