Skip to main content
Log in

One-pot parallel synthesis of 1,3,5-trisubstituted 1,2,4-triazoles

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An implementation of the three-component one-pot approach to unsymmetrical 1,3,5-trisubstituted-1,2,4-triazoles into combinatorial chemistry is described. The procedure is based on the coupling of amidines with carboxylic acids and subsequent cyclization with hydrazines. After the preliminary assessment of the reagent scope, the method had 81% success rate in parallel synthesis. It was shown that over a billion-sized chemical space of readily accessible (“REAL”) compounds may be generated based on the proposed methodology. Analysis of physicochemical parameters shows that the library contains significant fractions of both drug-like and “beyond-rule-of-five” members. More than 10 million of accessible compounds meet the strictest lead-likeness criteria. Additionally, 195 Mln of sp3-enriched compounds can be produced. This makes the proposed approach a valuable tool in medicinal chemistry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Library member characterization data not presented in the supplementary material are available from authors upon request. Compound library members generated in this study can be made available on request, but payment and/or a completed Materials Transfer Agreement shall be required if there is potential for commercial application. There are restrictions on the availability of the synthon lists with the reactivity features that have been used to generate the chemical space owing to commercial confidentiality reasons.

References

  1. Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 26:1–21. https://doi.org/10.3109/14756360903524304

    Article  CAS  PubMed  Google Scholar 

  2. Zhou C-H, Wang Y (2012) Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 19:239–280. https://doi.org/10.2174/092986712803414213

    Article  CAS  PubMed  Google Scholar 

  3. El-Sebaey SA (2020) Recent advances in 1,2,4-triazole scaffolds as antiviral agents. ChemistrySelect 5:11654–11680. https://doi.org/10.1002/slct.202002830

    Article  CAS  Google Scholar 

  4. Song M-X, Deng X-Q (2018) Recent developments on triazole nucleus in anticonvulsant compounds: a review. J Enzyme Inhib Med Chem 33:453–478. https://doi.org/10.1080/14756366.2017.1423068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu J-H, Fan Y-L, Zhou J (2018) Quinolone-triazole hybrids and their biological activities. J Heterocycl Chem 55:1854–1862. https://doi.org/10.1002/jhet.3234

    Article  CAS  Google Scholar 

  6. Fan Y-L, Ke X, Liu M (2018) Coumarin-triazole hybrids and their biological activities. J Heterocycl Chem 55:791–802. https://doi.org/10.1002/jhet.3112

    Article  CAS  Google Scholar 

  7. Xu M, Peng Y, Zhu L et al (2019) Triazole derivatives as inhibitors of Alzheimer’s disease: current developments and structure-activity relationships. Eur J Med Chem 180:656–672. https://doi.org/10.1016/j.ejmech.2019.07.059

    Article  CAS  PubMed  Google Scholar 

  8. Emami S, Tavangar P, Keighobadi M (2017) An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur J Med Chem 135:241–259. https://doi.org/10.1016/j.ejmech.2017.04.044

    Article  CAS  PubMed  Google Scholar 

  9. Olins GM, Corpus VM, Chen ST et al (1993) Pharmacology of SC-52458, an orally active, nonpeptide angiotensin AT1 receptor antagonist. J Cardiovasc Pharmacol 22:677. https://doi.org/10.1097/00005344-199310000-00016

    Article  Google Scholar 

  10. Yang LPH, Keam SJ, Keating GM (2007) Deferasirox: a review of its use in the management of transfusional chronic iron overload. Drugs 67:2211–2230. https://doi.org/10.2165/00003495-200767150-00007

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto K, Hirose K, Matsushita A et al (1984) Pharmacological studies of a new sleep-inducer, 1H–1,2,4-triazolyl benzophenone derivatives (450191-S) (I). Behavioral analysis Nihon Yakurigaku Zasshi 84:109–154

    Article  CAS  Google Scholar 

  12. Gay CM, Balaji K, Byers LA (2017) Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer 116:415–423. https://doi.org/10.1038/bjc.2016.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baselga J, Dent SF, Cortés J et al (2018) Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. J Clin Oncol. https://doi.org/10.1200/JCO.2018.36.18_suppl.LBA1006

    Article  PubMed  PubMed Central  Google Scholar 

  14. Casciuc I, Horvath D, Gryniukova A et al (2019) Pros and cons of virtual screening based on public “Big Data”: in silico mining for new bromodomain inhibitors. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.01.010

    Article  PubMed  Google Scholar 

  15. Hoffmann T, Gastreich M (2019) The next level in chemical space navigation: going far beyond enumerable compound libraries. Drug Discov Today 24:1148–1156. https://doi.org/10.1016/j.drudis.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  16. Reymond J-L (2015) The chemical space project. Acc Chem Res 48:722–730. https://doi.org/10.1021/ar500432k

    Article  CAS  PubMed  Google Scholar 

  17. Sterling T, Irwin JJ (2015) ZINC 15: ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walters WP (2019) Virtual chemical libraries. J Med Chem 62:1116–1124. https://doi.org/10.1021/acs.jmedchem.8b01048

    Article  CAS  PubMed  Google Scholar 

  19. Gorgulla C, Boeszoermenyi A, Wang Z-F et al (2020) An open-source drug discovery platform enables ultra-large virtual screens. Nature 580:663–668. https://doi.org/10.1038/s41586-020-2117-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lyu J, Irwin JJ, Roth BL et al (2019) Ultra-large library docking for discovering new chemotypes. Nature 566:224–229. https://doi.org/10.1038/s41586-019-0917-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grygorenko OO, Radchenko DS, Dziuba I et al (2020) Generating multibillion chemical space of readily accessible screening compounds. iScience. https://doi.org/10.1016/j.isci.2020.101681

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klingler F-M, Gastreich M, Grygorenko O et al (2019) SAR by space: enriching hit sets from the chemical space. Molecules 24:3096. https://doi.org/10.3390/molecules24173096

    Article  CAS  PubMed Central  Google Scholar 

  23. Cooper TWJ, Campbell IB, Macdonald SJF (2010) Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew Chemie Int Ed 49:8082–8091. https://doi.org/10.1002/anie.201002238

    Article  CAS  Google Scholar 

  24. Noël R, Song X, Jiang R et al (2009) Efficient methodology for the synthesis of 3-amino-1,2,4-triazoles. J Org Chem 74:7595–7597. https://doi.org/10.1021/jo9016502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang JY, Choi HS, Lee DH et al (2005) Solid-phase synthesis of 5-amino-1-(substituted thiocarbamoyl)pyrazole and 1,2,4-triazole derivatives via dithiocarbazate linker. J Comb Chem 7:136–141. https://doi.org/10.1021/cc049931n

    Article  CAS  PubMed  Google Scholar 

  26. Bogolyubsky AV, Savych O, Zhemera AV et al (2018) Facile one-pot parallel synthesis of 3-amino-1,2,4-triazoles. ACS Comb Sci 20:461–466. https://doi.org/10.1021/acscombsci.8b00060

    Article  CAS  PubMed  Google Scholar 

  27. Curtis ADM (2004) Product class 14: 1,2,4-triazoles. In: Storr G (ed) Category 2, hetarenes and related ring systems, 2004th edn. Georg Thieme Verlag, Stuttgart, pp 603–639

    Google Scholar 

  28. Atkinson MR, Polya JB (1954) Triazoles. Part II. N-substitution of some 1,2,4-triazoles. J Chem Soc. https://doi.org/10.1039/jr9540000141

    Article  Google Scholar 

  29. Wada K, Yoneta Y, Gomibuchi T et al (2011) Insecticidal benzenedicarboxamide derivative. U.S. Pat. US20110184188

  30. Martin SW, Romine JL, Chen L et al (2004) Application of solution-phase parallel synthesis to preparation of trisubstituted 1,2,4-triazoles. J Comb Chem 6:35–37. https://doi.org/10.1021/cc034018s

    Article  CAS  PubMed  Google Scholar 

  31. Szommer T, Lukács A, Kovács J et al (2012) Parallel synthesis of 1,2,4-triazole derivatives using microwave and continuous-flow techniques. Mol Divers 16:81–90. https://doi.org/10.1007/s11030-012-9357-2

    Article  CAS  PubMed  Google Scholar 

  32. Wang Q, Liu X, Tao F, Zhang C (2000) A facile approach To 5-trifluoromethylated 1,2,4-triazole derivatives. Synth Commun 30:4255–4262. https://doi.org/10.1080/00397910008087047

    Article  CAS  Google Scholar 

  33. Hassan NA (2007) Syntheses of acyclic C-glycosidic derivatives of 1,2,4-triazoles by cycloadditions of 1-aza-2-azoniaallene salts to D-glucononitrile-2,3,4,5,6-pentaacetate. J Heterocycl Chem 44:933–936. https://doi.org/10.1002/jhet.5570440432

    Article  CAS  Google Scholar 

  34. Uneyama K, Sugimoto K (1992) N-Substituted 2,2,2-trifluoroethanimidic acid 1-methylethylidene hydrazides as synthetic blocks for trifluoromethylated nitrogen heterocycles: syntheses and oxidative cyclizations. J Org Chem 57:6014–6019. https://doi.org/10.1021/jo00048a042

    Article  CAS  Google Scholar 

  35. Francavilla C, Low E, Nair S et al (2009) Quaternary ammonium N, N-dichloroamines as topical, antimicrobial agents. Bioorg Med Chem Lett 19:2731–2734. https://doi.org/10.1016/j.bmcl.2009.03.120

    Article  CAS  PubMed  Google Scholar 

  36. Azzouni S, Abdelli A, Gaucher A et al (2018) From imidates to vinyl-1,2,4-triazoles: synthesis, mechanistic aspects and first issues of their reactivity. Tetrahedron 74:6972–6978. https://doi.org/10.1016/j.tet.2018.10.050

    Article  CAS  Google Scholar 

  37. Meng J, Kung P-P (2009) Rapid, microwave-assisted synthesis of N1-substituted 3-amino-1,2,4-triazoles. Tetrahedron Lett 50:1667–1670. https://doi.org/10.1016/j.tetlet.2008.12.042

    Article  CAS  Google Scholar 

  38. Castanedo GM, Seng PS, Blaquiere N et al (2011) Rapid synthesis of 1,3,5-substituted 1,2,4-triazoles from carboxylic acids, amidines, and hydrazines. J Org Chem 76:1177–1179. https://doi.org/10.1021/jo1023393

    Article  CAS  PubMed  Google Scholar 

  39. Bailey PD, Mills TJ, Pettecrew R, Price RA (2005) Amides. In: Katritzky AR, Taylor RJK (eds) Comprehensive organic functional group transformations II. Elsevier, pp 201–294. https://doi.org/10.1016/B0-08-044655-8/00096-9

  40. Frohberg P, Schulze I, Donner C, Krauth F (2012) Remarkable stereoselectivity switch in synthesis of carbonyl substituted N 2-arylamidrazones with low lipophilicity. Tetrahedron Lett 53:4507–4509. https://doi.org/10.1016/j.tetlet.2012.06.032

    Article  CAS  Google Scholar 

  41. Nadin A, Hattotuwagama C, Churcher I (2012) Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew Chemie Int Ed 51:1114–1122. https://doi.org/10.1002/anie.201105840

    Article  CAS  Google Scholar 

  42. Grygorenko OO, Volochnyuk DM, Ryabukhin SV, Judd DB (2020) The symbiotic relationship between drug discovery and organic chemistry. Chem A Eur J 26:1196–1237. https://doi.org/10.1002/chem.201903232

    Article  CAS  Google Scholar 

  43. Shivanyuk AN, Ryabukhin SV, Tolmachev A et al (2007) Enamine real database: Making chemical diversity real. Chem today 25:58–59

    CAS  Google Scholar 

  44. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  45. Veber DF, Johnson SR, Cheng H-Y et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  46. DeGoey DA, Chen H-JJ, Cox PB, Wendt MD (2018) Beyond the rule of 5: lessons learned from AbbVie’s drugs and compound collection. J Med Chem 61:2636–2651. https://doi.org/10.1021/acs.jmedchem.7b00717

    Article  CAS  PubMed  Google Scholar 

  47. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. https://doi.org/10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  48. Oprea TI, Davis AM, Teague SJ, Leeson PD (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci 41:1308–1315. https://doi.org/10.1021/ci010366a

    Article  CAS  PubMed  Google Scholar 

  49. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834. https://doi.org/10.1021/jm701122q

    Article  CAS  PubMed  Google Scholar 

  50. Lovering F, Bikker J, Humblet C (2009) Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 52:6752–6756. https://doi.org/10.1021/jm901241e

    Article  CAS  PubMed  Google Scholar 

  51. Ritchie TJ, Macdonald SJF, Peace S et al (2013) Increasing small molecule drug developability in sub-optimal chemical space. Medchemcomm 4:673. https://doi.org/10.1039/c3md00003f

    Article  CAS  Google Scholar 

  52. Waring MJ, Arrowsmith J, Leach AR et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486. https://doi.org/10.1038/nrd4609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Angelika Konovets for the compound QC management, Mr. Bohdan V. Vashchenko and Ms. Vladyslava Prykhodko for their help with TOC graphics preparation, and Prof. Andrey A. Tolmachev for his encouragement and support.

Funding

The work was funded by Enamine Ltd. and NIH grant GM133836 (to Y.S.M.). O.O.G. was also funded by Ministry of Education and Science of Ukraine (grants No. 19BF037-03 and 21BF037-01 M).

Author information

Authors and Affiliations

Authors

Contributions

OOG and DSR contributed to conceptualization; DSR and VSN provided methodology; DSR, ID, and VSN performed validation; OOG, AAK, and DSR performed formal analysis; DSR, VSN, ID, and KEG were involved in investigation; DSR, YSM, ID, and KEG contributed to data curation; OOG and AAK performed writing—original draft; OOG, DSR, and YSM performed writing—review & editing; AAK and OOG helped with visualization; OOG and DSR supervised the study; DSR and YSM were involved in project administration; YSM and OOG performed funding acquisition.

Corresponding author

Correspondence to Oleksandr O. Grygorenko.

Ethics declarations

Conflict of interest

The authors declare no competing interests apart from those indicated in the Funding and Affiliation sections.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radchenko, D.S., Naumchyk, V.S., Dziuba, I. et al. One-pot parallel synthesis of 1,3,5-trisubstituted 1,2,4-triazoles. Mol Divers 26, 993–1004 (2022). https://doi.org/10.1007/s11030-021-10218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10218-2

Keywords

Navigation