Skip to main content
Log in

Domino ring opening and selective O/S-alkylation of cyclic ethers and thioethers

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Chemoselective domino ring opening and selective O/S-alkylation of ethers/thioethers over enol C/O alkylation has been observed. Various 2-aryl chromanones/thiochromanones with alkyl/allyl bromides were smoothly converted into the corresponding highly functionalized ethers and thioethers in excellent yields with high selectivity.

Graphic abstract

An unusual, chemoselective domino ring opening and selective ether/thioether O/S-alkylation over. An unusual, chemoselective domino ring opening and selective ether/thioether O/S alkylation over enol C/O alkylation has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

References

  1. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474. https://doi.org/10.1038/88150

    Article  CAS  PubMed  Google Scholar 

  2. Razmi A, Zarghi A, Arfaee S, Naderi N, Faizi M (2013) Evaluation of anti-nociceptive and anti-inflammatory activities of novel chalcone derivatives. Iran J Pharm Res 12:153–159. https://doi.org/10.22037/IJPR.2013.1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boumendjel A, Boccard J, Carrupt PA, Nicolle E, Blanc M, Geze A, Choisnard L, Wouessidjewe D, Matera EL, Dumontet C (2008) Antimitotic and antiproliferative activities of chalcones: forward structure–activity relationship. J Med Chem 51(7):2307–2310. https://doi.org/10.1021/jm0708331

    Article  CAS  PubMed  Google Scholar 

  4. Kumar SK, Hager E, Pettit C, Gurulingappa H, Davidson NE, Khan SR (2003) Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J Med Chem 46(14):2813–2815. https://doi.org/10.1021/jm030213+

    Article  CAS  PubMed  Google Scholar 

  5. Bakthadoss M, Kumar PV (2018) Ruthenium-catalyzed site-selective enone carbonyl directed ortho-C–H activation of aromatics and heteroaromatics with alkenes. Adv Synth Catal 360(14):2650–2658. https://doi.org/10.1002/adsc.201800376

    Article  CAS  Google Scholar 

  6. Kad GL, Kaur KP, Singh V, Singh J (1999) Microwave induced rate enhancement in aldol condensation. Synth Commun 29(15):2583–2586. https://doi.org/10.1080/00397919908086416

    Article  CAS  Google Scholar 

  7. Tanaka K, Sugino T (2001) Efficient conversion of 2′-hydroxychalcones into flavanones and flavanols in a water suspension medium. Green Chem 3:133–134. https://doi.org/10.1039/B101826B

    Article  CAS  Google Scholar 

  8. Achmad SA, Hakim EH, Juliawaty LD, Makmur L, Suyatno Ami N, Ghisalberti EL (1996) A new prenylated flavone from Artocarpus champeden. J Nat Prod 59(9):878–879. https://doi.org/10.1021/np960330q

    Article  CAS  Google Scholar 

  9. Wei B-L, Weng J-R, Chiu P-H, Hung C-F, Wang J-P, Lin C-N (2005) Antiinflammatory flavonoids from Artocarpus heterophyllus and Artocarpus communis. J Agric Food Chem 53(10):3867–3871. https://doi.org/10.1021/jf047873n

    Article  CAS  PubMed  Google Scholar 

  10. Zheng ZP, Cheng KW, Tsz-Kin To J, Li H, Wang M (2008) Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent. Mol Nutr Food Res 52(12):1530–1538. https://doi.org/10.1002/mnfr.200700481

    Article  CAS  PubMed  Google Scholar 

  11. Kenez A, Lestar Z, Lenkeyz B, Antus S (2008) Synthesis and structure–activity relationship study of monotesone-A, an antifungal component of Monotes engleri. Nat Prod Res 22(5):383–392. https://doi.org/10.1080/14786410701339055

    Article  CAS  PubMed  Google Scholar 

  12. Narasimham A, Belani JD (2014) Synthesis of tetracyclic flavonoids via palladium-catalyzed intramolecular oxidative cyclization. Synlett 25(16):2350–2354. https://doi.org/10.1055/s-0034-1378615

    Article  CAS  Google Scholar 

  13. Likhitwitayawuid K, Supudompol B, Sritularak B, Lipipun V, Rapp K, Schinazi RF (2005) Phenolics with anti-HSV and anti-HIV activities from Artocarpus gomezianus, Mallotus pallidus, and Triphasia trifolia. Pharm Biol 43(8):651–657. https://doi.org/10.1080/13880200500383058

    Article  CAS  Google Scholar 

  14. Chen S-B, Gao G-Y, Leung H-W, Yeung H-W, Yang J-S, Xiao P-G (2001) Aquiledine and isoaquiledine, novel flavonoid alkaloids from Aquilegia ecalcarata. J Nat Prod 64(1):85–87. https://doi.org/10.1021/np000256i

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita Y, Hanaya K, Shoji M, Sugai T (2016) Simple synthesis of sakuranetin and selinone via a common intermediate, utilizing complementary regioselectivity in the deacetylation of Naringenin triacetate. Chem Pharm Bull 64(7):961–965. https://doi.org/10.1248/cpb.c16-00190

    Article  CAS  Google Scholar 

  16. Garo E, Wolfender J-L, Hostettmann K, Hiller W, Antus S, Mavi S (1998) Prenylated flavanones from Monotes engleri: on-line structure elucidation by LC/UV/NMR. Helv Chim Acta 81(3–4):754–763. https://doi.org/10.1002/hlca.19980810325

    Article  CAS  Google Scholar 

  17. Sabitha G, Swapna R, Babu RS, Yadav JS (2005) Synthetic studies toward pondaplin: total synthesis of pondaplin analogues. Tetrahedron Lett 46(36):6145–6148. https://doi.org/10.1016/j.tetlet.2005.06.145

    Article  CAS  Google Scholar 

  18. Patonay T, Molnár D, Murányi Z (1995) Flavonoids, 45. A general and efficient synthesis of hydroxyflavones and -chromones. Bull Soc Chim Fr 132(2):233–242

    CAS  Google Scholar 

  19. Wang YC, Georghiou PE (2002) An efficient synthesis of thalifoline. Synthesis 2002(15):2187–2190. https://doi.org/10.1055/s-2002-34844

    Article  Google Scholar 

  20. Takahashi H, Kubota Y, Iguchi M, Fang L, Onda M (1986) Heterocycles. XVIII. Synthesis of the racemates of naturally occurring flavonoids. Heterocycles 24(2):369. https://doi.org/10.3987/r-1986-02-0369

    Article  CAS  Google Scholar 

  21. Kenez A, Juhasz L, Antus S (2002) A simple synthesis of selinone, an antifungal component of Monotes engleri. Heterocycl Commun 8(6):543–548. https://doi.org/10.1515/HC.2002.8.6.543

    Article  CAS  Google Scholar 

  22. Lee BH, Jaung JY, Jang SC, Yi SC (2005) Synthesis and optical properties of push–pull type tetrapyrazinoporphyrazines. Dyes Pigm 65(2):159–167. https://doi.org/10.1016/j.dyepig.2004.06.022

    Article  CAS  Google Scholar 

  23. Bakthadoss M, Kumar PV, Reddy TS (2017) Ruthenium-catalyzed, keto-directed, site-selective C–H activation of diverse chromanones with alkenes. Eur J Org Chem 30:4439–4444. https://doi.org/10.1002/ejoc.201700513

    Article  CAS  Google Scholar 

  24. Yang B, Tao H, Qin XC, Wang Z, Dong J, Lin X, Zhou X, Li J-L, Tu Z-C, Liu Y (2017) Aspergone, a new chromanone derivative from fungus Aspergillus sp. SCSIO41002 derived of mangrove soil sample. J Antibiot 70:788–790. https://doi.org/10.1038/ja.2016.169

    Article  CAS  Google Scholar 

  25. Valdomir G, Senthilkumar S, Ganapathy D, Zhang Y, Tietze LF (2018) Enantioselective total synthesis of chromanone lactone homo- and heterodimers. Chem Asian J 13(15):1888–1891. https://doi.org/10.1002/asia.201800619

    Article  CAS  Google Scholar 

  26. Lee H, Yuan Y, Rhee I, Corson TW, Seo S-Y (2016) Synthesis of natural homoisoflavonoids having either 5,7-dihydroxy-6-methoxy or 7-hydroxy-5,6-dimethoxy groups. Molecules 21(8):1058–1067. https://doi.org/10.3390/molecules21081058

    Article  CAS  PubMed Central  Google Scholar 

  27. Pressnitz D, Fuchs CS, Sattler JH, Knaus T, Macheroux P, Mutti FG, Kroutil W (2013) Asymmetric amination of tetralone and chromanone derivatives employing ω-transaminases. ACS Catal 3(4):555–559. https://doi.org/10.1021/cs400002d

    Article  CAS  Google Scholar 

  28. Yamashita A, Norton EB, Hanna C, Shim J, Salaski EJ, Zhou D, Mansour TS (2006) Synthesis of 3,3-dimethyl-4-chromanones: improved procedures without ring opening. Synth Commun 36:465–472. https://doi.org/10.1080/00397910500383543

    Article  CAS  Google Scholar 

  29. Gómez-Bengoa E, Landa A, Lizarraga A, Mielgo A, Oiarbide M, Palomo C (2011) Catalytic asymmetric α-alkylation of aldehydesvia a SN2′-type addition-elimination pathway. Chem Sci 2:353–357. https://doi.org/10.1039/C0SC00402B

    Article  Google Scholar 

  30. Padfield EM, Tomlins ML (1950) The action of sodium ethoxide on chroman-4-ones. J Chem Soc. https://doi.org/10.1039/JR9500002272

    Article  Google Scholar 

  31. Sebök P, Timár T, Jászberényi JC, Batta G (1998) Selective syntheses of analogues of the natural precocenes. synthesis and regioselective O-alkylation of 6-chloro- and 6-tert-butyl-7,8-dihydroxy-2,2-dimethyl-4-chromanones. Heterocycles 27(11):2595–2607. https://doi.org/10.3987/com-88-4638

    Article  Google Scholar 

  32. Bakthadoss M, Kannan D, Srinivasan J, Vinayagam V (2015) Highly regio- and diastereo-selective synthesis of novel tri- and tetra-cyclic perhydroquinoline architectures via an intramolecular [3 + 2] cycloaddition reaction. Org Biomol Chem 13:2870–2874. https://doi.org/10.1039/C4OB02203C

    Article  CAS  PubMed  Google Scholar 

  33. Bakthadoss M, Sivakumar N (2009) Novel regio- and stereoselective synthesis of functionalized 3-spiropyrrolidines and 3-spiropyrrolizidines using the Baylis–Hillman adducts derived from nitroolefins. Synlett 6:1014–1018. https://doi.org/10.1055/s-0028-1088206

    Article  CAS  Google Scholar 

  34. Bakthadoss M, Kannan D, Selvakumar R (2013) A multicomponent cascade reaction for the synthesis of novel chromenopyranpyrazole scaffolds. Chem Commun 49:10947–10949. https://doi.org/10.1039/C3CC45502E

    Article  CAS  Google Scholar 

  35. Bakthadoss M, Murugan G (2010) Highly stereoselective synthesis of tricyclic chromenoisoxazolidines by intramolecular 1,3-dipolar cycloadditions. Eur J Org Chem 30:5825–5830. https://doi.org/10.1002/ejoc.201000804

    Article  CAS  Google Scholar 

  36. Bakthadoss M, Devaraj A, Kannan D (2014) Multicomponent cascade assembly for quinolinopyranpyrazole architectures. Eur J Org Chem 7:1505–1513. https://doi.org/10.1002/ejoc.201301422

    Article  CAS  Google Scholar 

  37. Bakthadoss M, Murugan G (2008) Simple and new protocol for the synthesis of novel (z)-3-arylidenebenzothiazepin-4-ones using Baylis–Hillman derivatives. Synth Commun 38(20):3406–3413. https://doi.org/10.1080/00397910802138249

    Article  CAS  Google Scholar 

  38. Bakthadoss M, Mushaf M (2018) A distal vinyl shift (DVS) through quadruple domino reaction: synthesis of N-vinyl benzoheterocyclic scaffolds. RSC Adv 8:12152–12156. https://doi.org/10.1039/C8RA01478G

    Article  CAS  Google Scholar 

  39. Bakthadoss M, Agarwal V (2018) Synthesis of highly functionalized tricyclic chromenopyrazole frameworks via intramolecular azomethine imine 1,3-dipolar cycloaddition (IAIDC). ChemistrySelect 3(24):6960–6964. https://doi.org/10.1002/slct.201801269

    Article  CAS  Google Scholar 

  40. Bakthadoss M, Vinayagam V, Agarwal V, Sharada DS (2019) Three component, one-pot synthesis of multifunctional quinolinopyranpyrazoles via catalyst-free multicomponent reaction. ChemistrySelect 4(27):7996–7999. https://doi.org/10.1002/slct.201901806

    Article  CAS  Google Scholar 

  41. Bakthadoss M, Sivakumar N, Devaraj A (2015) Synthesis of benzoxepinopyrrolidines/spiropyrrolidines via oxa-Pictet–Spengler and [3 + 2] cycloaddition reactions. Tetrahedron Lett 56(35):4980–4983. https://doi.org/10.1016/j.tetlet.2015.07.003

    Article  CAS  Google Scholar 

  42. Basavaiah D, Bakthadoss M, Reddy GP (2006) Tandem construction of carbon–carbon and carbon–oxygen bonds in the Baylis–Hillman chemistry: synthesis of functionalized dl-bis-allyl ethers. Synth Commun 32(5):689–697. https://doi.org/10.1081/SCC-120002506

    Article  Google Scholar 

  43. Vuppalapati SVN, Xia L, Edayadulla N, Lee YR (2014) Mild and efficient one-pot synthesis of diverse flavanone derivatives via an organocatalyzed Mannich-type reaction. Synthesis 46(04):465–474. https://doi.org/10.1055/s-0033-1340466

    Article  CAS  Google Scholar 

  44. Matsui JK, Molander GA (2017) Direct α-arylation/heteroarylation of 2-trifluoroboratochromanones via photoredox/nickel dual catalysis. Org Lett 19(3):436–439. https://doi.org/10.1021/acs.orglett.6b03448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He J, Zheng J, Liu J, She X, Pan X (2006) N-heterocyclic carbene catalyzed nucleophilic substitution reaction for construction of benzopyrones and benzofuranones. Org Lett 8(20):4637–4640. https://doi.org/10.1021/ol061924f

    Article  CAS  PubMed  Google Scholar 

  46. Read de Alaniz J, Rovis T (2005) A highly enantio- and diastereoselective catalytic intramolecular Stetter reaction. J Am Chem Soc 127(17):6284–6289. https://doi.org/10.1021/ja0425132

    Article  CAS  PubMed  Google Scholar 

  47. Mitra RN, Show K, Barman D, Sarkar S, Maiti DK (2019) NHC-catalyzed dual Stetter reaction: a mild cascade annulation for the syntheses of naphthoquinones, isoflavanones, and sugar-based chiral analogues. J Org Chem 84(1):42–52. https://doi.org/10.1021/acs.joc.8b01503

    Article  CAS  PubMed  Google Scholar 

  48. Ren X, Han C, Feng X, Du H (2017) A borane-catalyzed metal-free hydrosilylation of chromones and flavones. Synlett 28(18):2421–2424. https://doi.org/10.1055/s-0036-1588474

    Article  CAS  Google Scholar 

  49. CCDC number for the crystal structure 6r is 1867343

Download references

Acknowledgements

V. A. thank CSIR, New Delhi, for Senior Research Fellowship (SRF). TTR thanks UGC for the scholarship. We also acknowledge the Central Instrumentation Facility (CIF), Pondicherry University, for NMR spectra and DST-FIST for the ESI-HRMS facility.

Funding

Science and Engineering Research Board (DST-SERB [No. EEQ/2018/000930]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Bakthadoss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakthadoss, M., Agarwal, V., Tadiparthi, T.R. et al. Domino ring opening and selective O/S-alkylation of cyclic ethers and thioethers. Mol Divers 25, 2467–2478 (2021). https://doi.org/10.1007/s11030-020-10105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10105-2

Keywords

Navigation