Skip to main content
Log in

Fe3O4@C@OSO3H as an efficient, recyclable magnetic nanocatalyst in Pechmann condensation: green synthesis, characterization, and theoretical study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Novel sulfonated carbon-coated magnetic nanoparticles (SCCMNPs; Fe3O4@C@OSO3H) were designed, synthesized, characterized, and applied as an efficient nanocatalyst for green synthesis of coumarin derivatives through Pechmann condensation. The Fe3O4@C@OSO3H was manufactured through a simple and inexpensive two-step procedure and characterized by FTIR, EDX, XRD, SEM, TEM, DLS, VSM, and TGA techniques. It was identified as an efficient heterogeneous catalyst in the Pechmann condensation of phenol derivatives and β-ketoesters, leading to high-yield coumarin derivatives under solvent-free conditions. The Fe3O4@C@OSO3H removed after reaction finishing point by an external magnet, and it was reused fifteen times at the same conditions. Besides, theoretical studies were carried out using B3LYP/6-311++G(d,p) to more consideration of the reaction mechanism. The study of the frontier molecular orbitals, NBO atomic charges, molecular electrostatic potential of reactants, as well as Pechmann condensation mechanism was known very useful in suitable reactant choice. The reaction was performed through the electrophilic attack, dehydration, and trans-esterification, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y (2008) para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc 130(15):5022–5023

    CAS  PubMed  Google Scholar 

  2. Han Z-Y, Xiao H, Chen X-H, Gong L-Z (2009) Consecutive intramolecular hydroamination/asymmetric transfer hydrogenation under relay catalysis of an achiral gold complex/chiral Brønsted acid binary system. J Am Chem Soc 131(26):9182–9183

    CAS  PubMed  Google Scholar 

  3. Muratore ME et al (2009) Enantioselective Brønsted acid-catalyzed N-acyliminium cyclization cascades. J Am Chem Soc 131(31):10796–10797

    CAS  PubMed  Google Scholar 

  4. Lee YH et al (2016) Removal of benzoic acid in heavy oils by esterification using modified ferrierite: roles of Brønsted and Lewis acid sites. Energy Fuels 30(7):5391–5397

    CAS  Google Scholar 

  5. Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35(9):791–797

    CAS  PubMed  Google Scholar 

  6. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35(9):686–694

    CAS  PubMed  Google Scholar 

  7. Smith K, El-Hiti GA, Jayne AJ, Butters M (2003) Acetylation of aromatic ethers using acetic anhydride over solid acid catalysts in a solvent-free system. Scope of the reaction for substituted ethers. Org Biomol Chem 1(9):1560–1564

    CAS  PubMed  Google Scholar 

  8. Hara M et al (2004) A carbon material as a strong protonic acid. Angew Chem Int Ed 43(22):2955–2958

    CAS  Google Scholar 

  9. Melero JA, Bautista LF, Morales G, Iglesias J, Briones D (2009) Biodiesel production with heterogeneous sulfonic acid-functionalized mesostructured catalysts. Energy Fuels 23(1):539–547

    CAS  Google Scholar 

  10. Morales G, Paniagua M, Melero JA, Vicente G, Ochoa C (2011) Sulfonic acid-functionalized catalysts for the valorization of glycerol via transesterification with methyl acetate. Ind Eng Chem Res 50(10):5898–5906

    CAS  Google Scholar 

  11. Zareyee D, Moosavi SM, Alaminezhad A (2013) Chemoselective synthesis of geminal diacetates (acylals) using eco-friendly reusable propylsulfonic acid based nanosilica (SBA-15-Ph-PrSO3H) under solvent-free conditions. J Mol Catal A-Chem 378:227–231

    CAS  Google Scholar 

  12. Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal 2(7):1296–1304

    CAS  Google Scholar 

  13. Fukuhara K et al (2011) Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. Chemsuschem 4(6):778–784

    CAS  PubMed  Google Scholar 

  14. Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv Mater 23(29):3294–3297

    CAS  PubMed  Google Scholar 

  15. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    CAS  Google Scholar 

  16. Kim J et al (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689

    CAS  PubMed  Google Scholar 

  17. Abbasi Z, Rezayati S, Bagheri M, Hajinasiri R (2017) Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solvent- and halogen-free protocol for the synthesis of coumarin derivatives. Chin Chem Lett 28(1):75–82

    CAS  Google Scholar 

  18. Ghavidel H, Mirza B, & Soleimani-Amiri S (2019) A Novel, efficient, and recoverable basic Fe3O4@C nano-catalyst for green synthesis of 4H-chromenes in water via one-pot three component reactions. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2019.1607413

    Article  Google Scholar 

  19. Soleimani-Amiri S, Arabkhazaeli M, Hossaini Z, Afrashteh S, Eslami AA (2018) Synthesis of chromene derivatives via three-component reaction of 4-hydroxycumarin catalyzed by magnetic Fe3O4 nanoparticles in water. J Heterocycl Chem 55(1):209–213

    CAS  Google Scholar 

  20. Keshavarz M, Zarei Ahmady A, Vaccaro L, Kardani M (2018) Non-covalent supported of l-proline on graphene oxide/Fe3O4 nanocomposite: a novel, highly efficient and superparamagnetically separable catalyst for the synthesis of bis-pyrazole derivatives. Molecules 23(2):16

    Google Scholar 

  21. Ahmady AZ, Saghanezhad SJ, Mohtasham N (2017) Sulfuric acid functionalized magnetic nanocatalyst for one-pot green synthesis of 2,3-dihydroquinazolin-4 (1H)-ones. J Nanoanal 4(4):313–319

    Google Scholar 

  22. Zhang M, Liu Y-H, Shang Z-R, Hu H-C, Zhang Z-H (2017) Supported molybdenum on graphene oxide/Fe3O4: an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal Commun 88:39–44

    CAS  Google Scholar 

  23. Chen M-N, Mo L-P, Cui Z-S, Zhang Z-H (2019) Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27–37

    Google Scholar 

  24. Zhang M et al (2016) Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv 6(108):106160–106170

    CAS  Google Scholar 

  25. Wang P, Kong A, Wang W, Zhu H, Shan Y (2010) Facile preparation of ionic liquid functionalized magnetic nano-solid acid catalysts for acetalization reaction. Catal Lett 135(1):159–164

    CAS  Google Scholar 

  26. Karimi B, Mirzaei HM, Mobaraki A, Vali H (2015) Sulfonic acid-functionalized periodic mesoporous organosilicas in esterification and selective acylation reactions. Catal Sci Technol 5(7):3624–3631

    CAS  Google Scholar 

  27. Elhamifar D, Ramazani Z, Norouzi M, Mirbagheri R (2018) Magnetic iron oxide/phenylsulfonic acid: a novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. J Colloid Interface Sci 511:392–401

    CAS  PubMed  Google Scholar 

  28. Esfahani FK, Zareyee D, Yousefi R (2014) Sulfonated core–shell magnetic nanoparticle (Fe3O4@SiO2@PrSO3H) as a highly active and durable protonic acid catalyst; synthesis of coumarin derivatives through Pechmann reaction. ChemCatChem 6(12):3333–3337

    CAS  Google Scholar 

  29. Dumitrache F et al (2004) Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diamond Relat Mater 13(2):362–370

    CAS  Google Scholar 

  30. Zheng J et al (2012) One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnol 23(16):165601

    CAS  Google Scholar 

  31. Polshettiwar V et al (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075

    CAS  PubMed  Google Scholar 

  32. Naeimi H, Mohamadabadi S (2014) Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions. Dalton Trans 43(34):12967–12973

    CAS  PubMed  Google Scholar 

  33. Mahmoudi H, Jafari AA (2013) Facial preparation of sulfonic acid-functionalized magnetite-coated maghemite as a magnetically separable catalyst for pyrrole synthesis. ChemCatChem 5(12):3743–3749

    CAS  Google Scholar 

  34. Mobaraki A, Movassagh B, Karimi B (2014) Magnetic solid sulfonic acid decorated with hydrophobic regulators: a combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles. ACS Comb Sci 16(7):352–358

    CAS  PubMed  Google Scholar 

  35. Samadizadeh M, Nouri S, Kiani Moghadam F (2016) Magnetic nanoparticles functionalized ethane sulfonic acid (MNESA): as an efficient catalyst in the synthesis of coumarin derivatives using Pechmann condensation under mild condition. Res Chem Intermed 42(6):6089–6103

    CAS  Google Scholar 

  36. Nasseri MA, Sadeghzadeh SM (2014) Diazabicyclo[2.2.2]octane stabilized on Fe3O4 as catalysts for synthesis of coumarin under solvent-free conditions. J Iran Chem Soc 11(1):27–33

    CAS  Google Scholar 

  37. Fan G-j et al (2001) A novel class of inhibitors for steroid 5α-reductase: synthesis and evaluation of umbelliferone derivatives. Bioorg Med Chem Lett 11(17):2361–2363

    CAS  PubMed  Google Scholar 

  38. Wang C-J, Hsieh Y-J, Chu C-Y, Lin Y-L, Tseng T-H (2002) Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett 183(2):163–168

    CAS  PubMed  Google Scholar 

  39. Spino C, Dodier M, Sotheeswaran S (1998) Anti-HIV coumarins from Calophyllum seed oil. Bioorg Med Chem Lett 8(24):3475–3478

    CAS  PubMed  Google Scholar 

  40. Ghosh PP, Das AR (2013) Nanocrystalline and reusable ZnO catalyst for the assembly of densely functionalized 4H-chromenes in aqueous medium via one-pot three component reactions: a greener, “NOSE” approach. J Org Chem 78(12):6170–6181

    CAS  PubMed  Google Scholar 

  41. Cravotto G, Nano GM, Palmisano G, Tagliapietra S (2001) An asymmetric approach to coumarin anticoagulants via hetero-Diels–Alder cycloaddition. Tetrahedron Asymmetry 12(5):707–709

    CAS  Google Scholar 

  42. Sharghi H, Jokar M (2007) Al2O3/MeSO3H (AMA) as a novel heterogeneous system for synthesis of coumarins under mild conditions. Heterocycles 71(12):2721–2733

    CAS  Google Scholar 

  43. Sharma G, Reddy JJ, Lakshmi PS, Krishna PR (2005) An efficient ZrCl4 catalyzed one-pot solvent free protocol for the synthesis of 4-substituted coumarins. Tetrahedron Lett 46(36):6119–6121

    CAS  Google Scholar 

  44. Gu Y, Zhang J, Duan Z, Deng Y (2005) Pechmann reaction in non-chloroaluminate acidic ionic liquids under solvent-free conditions. Adv Synth Catal 347(4):512–516

    CAS  Google Scholar 

  45. Zareyee D, Serehneh M (2014) Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation. J Mol Catal A: Chem l 391:88–91

    CAS  Google Scholar 

  46. Prousis KC, Avlonitis N, Heropoulos GA, Calogeropoulou T (2014) FeCl3-catalysed ultrasonic-assisted, solvent-free synthesis of 4-substituted coumarins. A useful complement to the Pechmann reaction. Ultrason Sonochem 21(3):937–942

    CAS  PubMed  Google Scholar 

  47. Jafari E, Farajzadeh P, Akbari N, Karbakhshzadeh A (2019) An efficient and facile synthesis of the coumarin and ester derivatives using sulfonated polyionic liquid as a highly active heterogeneous catalyst. Chem Rev Lett 2(3):123–129

    Google Scholar 

  48. Ghodke S, Chudasama U (2013) Solvent free synthesis of coumarins using environment friendly solid acid catalysts. Appl Catal A 453:219–226

    CAS  Google Scholar 

  49. Ahmed AI, El-Hakam S, Khder A, El-Yazeed WA (2013) Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction. J Mol Catal A: Chem 366:99–108

    CAS  Google Scholar 

  50. Mokhtary M, Najafizadeh F (2012) Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3); a mild and efficient catalyst for synthesis of 4-metyl coumarins via the Pechmann reaction. C R Chim 15(6):530–532

    CAS  Google Scholar 

  51. Bouasla S et al (2017) Coumarin derivatives solvent-free synthesis under microwave irradiation over heterogeneous solid catalysts. Molecules 22(12):2072

    PubMed Central  Google Scholar 

  52. Tyagi B, Mishra MK, Jasra RV (2007) Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. J Mol Catal A: Chem 276(1–2):47–56

    CAS  Google Scholar 

  53. Daru J, Stirling A (2011) Mechanism of the Pechmann reaction: a theoretical study. J Org Chem 76(21):8749–8755

    CAS  PubMed  Google Scholar 

  54. Sethna SM, Shah NM (1945) The chemistry of coumarins. Chem Rev 36(1):1–62

    CAS  Google Scholar 

  55. Torviso R et al (2008) Catalytic activity of Keggin heteropolycompounds in the Pechmann reaction. Appl Catal A 339(1):53–60

    CAS  Google Scholar 

  56. Calvino-Casilda V, Bañares M, LozanoDiz E (2010) Real-time Raman monitoring during coumarins synthesis via Pechmann condensation: a tool for controlling the preparation of pharmaceuticals. Catal Today 155(3–4):279–281

    CAS  Google Scholar 

  57. Tyndall S, Wong KF, VanAlstine-Parris MA (2015) Insight into the mechanism of the Pechmann condensation reaction using NMR. J Org Chem 80(18):8951–8953

    CAS  PubMed  Google Scholar 

  58. Pornsatitworakul S et al (2017) The coumarin synthesis: a combined experimental and theoretical study. Monatsh Chem 148(7):1245–1250

    CAS  Google Scholar 

  59. Suh S-E, Chen S, Houk K, Chenoweth DM (2018) The mechanism of the triple aryne–tetrazine reaction cascade: theory and experiment. Chem Sci 9(39):7688–7693

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Han L, Xu B, Liu T (2018) Mechanisms of the synthesis of trialkylsubstituted alkenylboronates from unactivated internal alkynes catalyzed by copper: a theoretical study. J Organomet Chem 864:154–159

    CAS  Google Scholar 

  61. Altass HM, Khder AERS (2018) Preparation, characterization of highly active recyclable zirconium and tin tungstate catalysts and their application in Pechmann condensation reaction. React Kinet Mech Catal 125(1):16

    Google Scholar 

  62. Aoudjit L, Halliche D, Bachari K, Saadi A, Cherifi O (2017) Nickel-containing mesoporous silicas as a catalyst for the Pechmann condensation reaction. Theor Exp Chem 53:10

    Google Scholar 

  63. Jadhav NH, Sakate SS, Rasal NK, Shinde, Pawar RA (2019) Heterogeneously catalyzed Pechmann condensation employing the tailored Zn0.925Ti0.075O NPs: synthesis of coumarin. ACS Omega 4(5):8522–8527

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mirosanloo A, Zareyee D, Khalilzadeh MA (2018) Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent-free synthesis of coumarin derivatives via von Pechmann condensation. Appl Organomet Chem 32(12):e4546

    Google Scholar 

  65. Pakdel S, Akhlaghinia B, Mohammadinezhad A (2019) Fe3O4@boehmite-NH2-CoII NPs: an environment friendly nanocatalyst for solvent free synthesis of coumarin derivatives through Pechmann condensation reaction. Chem Afr 2(3):10

    Google Scholar 

  66. Sun R, Gao Y, Ma Y, Yang G, Li Y (2017) SnCl4 grafted on silica gel: an efficient catalyst for solvent-free synthesis of coumarins via the Pechmann condensation. J Iran Chem Soc 14:5

    Google Scholar 

  67. Borah KJ, Borah R (2011) Poly(4-vinylpyridine)-supported sulfuric acid: an efficient solid acid catalyst for the synthesis of coumarin derivatives under solvent-free conditions. Monatsh Chem 142(12):1253–1257

    CAS  Google Scholar 

  68. Keri RS, Hosamani KM, Seetharama Reddy HR (2009) A solvent-free synthesis of coumarins using phosphotungstic acid as catalyst. Catal Lett 131(1):321–327

    CAS  Google Scholar 

  69. Reddy YT et al (2008) Ceric ammonium nitrate (CAN): an efficient catalyst for the coumarin synthesis via Pechmann condensation using conventional heating and microwave irradiation. Synth Commun 38(13):2082–2088

    CAS  Google Scholar 

  70. Raju BC et al (2010) α-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives. Bioorg Med Chem 18(1):358–365

    CAS  PubMed  Google Scholar 

  71. Gaussian 09 (2016) In: Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian (eds) Inc., Wallingford CT

  72. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104(3):1040–1046

    CAS  Google Scholar 

  73. Hehre WJ, Warren J, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, p 548

    Google Scholar 

  74. Foresman JB, Frisch Æ (2015) Exploring chemistry with electronic structure methods, 3rd edn. Gaussian, Inc., Pittsburgh

    Google Scholar 

  75. Glendening ED et al (2013) NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Soleimani-Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiei, Z., Soleimani-Amiri, S. & Azizi, Z. Fe3O4@C@OSO3H as an efficient, recyclable magnetic nanocatalyst in Pechmann condensation: green synthesis, characterization, and theoretical study. Mol Divers 25, 67–86 (2021). https://doi.org/10.1007/s11030-019-10025-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-10025-w

Keywords

Navigation