Skip to main content
Log in

Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Dihydropyrimidin-2(1H)-ones/thiones (DHPMs) are important heterocyclic compounds owing to their excellent biological activities and have been widely utilized in pharmaceutical applications. Recently, numerous DHPM derivatives have been prepared. This review covers the synthesis of DHPMs and improved procedures for the preparation of DHPMs from 1995 to 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90
Scheme 91
Scheme 92
Scheme 93
Scheme 94
Scheme 95
Scheme 96
Scheme 97
Scheme 98
Scheme 99
Scheme 100
Scheme 101
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106
Scheme 107
Scheme 108
Scheme 109
Scheme 110
Scheme 111
Scheme 112
Scheme 113
Scheme 114
Scheme 115
Scheme 116
Scheme 117
Scheme 118
Scheme 119
Scheme 120
Scheme 121
Scheme 122
Scheme 123
Scheme 124
Scheme 125
Scheme 126
Scheme 127
Scheme 128
Scheme 129
Scheme 130
Scheme 131

Similar content being viewed by others

References

  1. Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type a literature survey. Eur J Med Chem 35:1043–1052. https://doi.org/10.1016/S02235234(00)01189-2

    Article  PubMed  CAS  Google Scholar 

  2. Snider BB, Chen J, Patil AD, Freyer A (1996) Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereoehemistry of batzelladines A and D. Tetrahedron Lett 37:6977–6980. https://doi.org/10.1016/0040-4039(96)01575-4

    Article  CAS  Google Scholar 

  3. Kappe CO (2000) Recent advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an old dog. Acc Chem Res 33: 879–888. https://doi.org/10.1021/ar000048h

  4. Kumar A, Watar A, Maurya R (2007) Synthesis of 3,4-dihydropyrimidin-2(1H)-ones using Ziegler–Natta catalyst system under solvent free conditions. J Mol Catal A Chem 272:53–56. https://doi.org/10.1016/j.molcata.2007.03.026

    Article  CAS  Google Scholar 

  5. Azizian J, Mohammadi AA, Karimi AR, Mohammadizadeh MR (2006) KAl\((\text{ SO }_{4})_{2}\cdot \text{12H }_{2}\text{ O }\) supported on silica gel as a novel heterogeneous system catalyzed biginelli reaction: one-pot synthesis of dihydropyrimidinones under solvent-free conditions. Appl Catal A Gen 300:85–88. https://doi.org/10.1016/j.apcata.2005.11.001

    Article  CAS  Google Scholar 

  6. Dhumaskara KL, Meenab SN, Ghadi SC (2014) Graphite catalyzed solvent free synthesis of dihydropyrimidin-2(1H)-ones/thiones and their antidiabetic activity. Bioorg Med Chem Lett 24:2897–2899. https://doi.org/10.1016/j.bmcl.2014.04.099

    Article  CAS  Google Scholar 

  7. Adibi H, Samimi HL, Beygzadeh M (2007) Iron(III) trifluoroacetate and trifluoromethanesulfonate: recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catal Commun 8:2119–2124. https://doi.org/10.1016/j.catcom.2007.04.022

    Article  CAS  Google Scholar 

  8. Velpula R, Banothu J, Gali R, Deshineni R, Bavantul R (2015) 1-Sulfopyridinium chloride: green and expeditious ionic liquid for the one-pot synthesis of fused 3,4-dihydropyrimidin-2(\(1H\))-ones and thiones under solvent-free conditions. Chin Chem Lett 26:309–312. https://doi.org/10.1016/j.cclet.2014.11.030

    Article  CAS  Google Scholar 

  9. Karami B, Khodabakhshi S, Akrami S, Farahi M (2014) Regiospecific strategies for the synthesis of novel dihydropyrimidinones and pyrimidopyridazines catalyzed by molybdate sulfuric acid. Tetrahedron Lett 55:3581–3584. https://doi.org/10.1016/j.tetlet.2014.02.025

    Article  Google Scholar 

  10. Lal J, Gupta SK, Thavaselvam D, Agarwal DD (2012) Design, synthesis, synergistic antimicrobial activity and cytotoxicity of 4-aryl substituted 3,4-dihydropyrimidinones of curcumin. Bioorg Med Chem Lett 22:2872–2876. https://doi.org/10.1016/j.bmcl.2012.02.056

    Article  PubMed  CAS  Google Scholar 

  11. Lal J, Sharma M, Gupta S, Parashar P, Sahu P, Agarwal DD (2012) Hydrotalcite: a novel and reusable solid catalyst for one-pot synthesis of 3,4-dihydropyrimidinones and mechanistic study under solvent free conditions. J Mol Catal A Chem 352:31–37. https://doi.org/10.1016/j.molcata.2011.09.009

    Article  CAS  Google Scholar 

  12. Rao GBD, Acharya BN, Kaushik MP (2013) An efficient synthesis of \(\upbeta \)-ketoesters via transesterification and its application in Biginelli reaction under solvent-free, catalyst-free conditions. Tetrahedron Lett 54:6644–6647. https://doi.org/10.1016/j.tetlet.2013.09.130

    Article  CAS  Google Scholar 

  13. Singh K, Arora D, Singh S (2006) Dowex-promoted general synthesis of N,N \(^\prime \)-disubstituted-4-aryl-3,4-dihydropyrimidinones using a solvent-free Biginelli condensation protocol. Tetrahedron Lett 47:4205–4207. https://doi.org/10.1016/j.tetlet.2006.04.061

    Article  CAS  Google Scholar 

  14. Debache A, Amimour M, Belfaitah A, Rhouati S, Carboni B (2008) A one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(\(1H\))-ones/thiones catalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett 49:6119–6121. https://doi.org/10.1016/j.tetlet.2008.08.016

    Article  CAS  Google Scholar 

  15. Balan B, Bahulayan D (2014) A novel green synthesis of \(\upalpha /\upbeta \)-amino acid functionalized pyrimidinone peptidomimetics using triazole ligation through click-multi-component reactions. Tetrahedron Lett 55:227–231. https://doi.org/10.1016/j.tetlet.2013.11.002

    Article  CAS  Google Scholar 

  16. Rafiee E, Shahbazi F (2006) One-pot synthesis of dihydropyrimidones using silica-supported heteropoly acid as an efficient and reusable catalyst: improved protocol conditions for the Biginelli reaction. J Mol Catal A Chem 250:57–61. https://doi.org/10.1016/j.molcata.2006.01.049

    Article  CAS  Google Scholar 

  17. Kefayati H, Asghari F, Khanjanian R (2012) 1-Methylimidazolium hydrogen sulfate/chlorotrimethylsilane: an effective catalytic system for the synthesis of 3,4-dihydropyrimidin-2(\(1H\))-ones and hydroquinazoline-2,5-diones. J Mol Liq 172:147–151. https://doi.org/10.1016/j.molliq.2012.01.019

    Article  CAS  Google Scholar 

  18. Kalbasi RJ, Massah AR, Daneshvarnejad B (2012) Preparation and characterization of bentonite/PS-\(\text{ SO }_{3}\)H nanocomposites as an efficient acid catalyst for the Biginelli reaction. Appl Clay Sci 55:1–9. https://doi.org/10.1016/j.clay.2011.05.015

    Article  CAS  Google Scholar 

  19. Nasr-Esfahani M, Hoseini SJ, Mohammadi F (2011) \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Chin J Catal 32:1484–1489. https://doi.org/10.1016/S1872-2067(10)60263-X

    Article  CAS  Google Scholar 

  20. Jiang C, You QD (2007) An efficient and solvent-free one-pot synthesis of dihydropyrimidinones under microwave irradiation. Chin Chem Lett 18:647–650. https://doi.org/10.1016/j.cclet.2007.04.002

    Article  CAS  Google Scholar 

  21. Shobha D, Chari MA (2009) An efficient Biginelli one-pot synthesis of new benzoxazole-substituted dihydropyrimidinones and thiones catalysed by trifluoro acetic acid under solvent-free conditions. Chin Chem Lett 20:1059–1061. https://doi.org/10.1016/j.cclet.2009.03.024

    Article  CAS  Google Scholar 

  22. Nandurkar NS, Bhanushali MJ, Bhor MD, Bhanage BD (2007) \(\text{ Y }(\text{ NO }_{3})_{3}\cdot \text{6H }_{2}\text{ O }\): a novel and reusable catalyst for one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. J Mol Catal A Chem 271:14–17. https://doi.org/10.1016/j.molcata.2007.02.021

    Article  CAS  Google Scholar 

  23. Tayebee R, Amini MM, Ghadamgahi M, Armaghan M (2013) \(\text{ H }_{5}\text{ PW }_{10}\text{ V }_{2}\text{ O }_{40}\)/Pip-SBA-15: a novel reusable organic-inorganic hybrid material as potent Lewis acid catalyst for one-pot solvent-free synthesis of 3,4-dihydropyrimidinones. J Mol Catal A Chem 366:266–274. https://doi.org/10.1016/j.molcata.2012.10.004

    Article  CAS  Google Scholar 

  24. Kour G, Gupta M, Paul S, Rajnikant Gupta VK (2014) \(\text{ SiO }_{2}\)-\(\text{ CuCl }_{2}\): an efficient and recyclable heterogeneous catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(\(1H\))-ones. J Mol Catal A Chem 392:260–269. https://doi.org/10.1016/j.molcata.2014.05.022

    Article  CAS  Google Scholar 

  25. Kouachi K, Lafaye G, Pronier S, Bennini L, Menad S (2014) Mo/\(\gamma \)-\(\text{ Al }_{2}\text{ O }_{3}\) catalysts for the Biginelli reaction. Effect of Mo loading. J Mol Catal A Chem 395:210–216. https://doi.org/10.1016/j.molcata.2014.08.025

    Article  CAS  Google Scholar 

  26. Chaudhary GR, Bansal P, Mehta SK (2014) Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chem Eng J243:217–224. https://doi.org/10.1016/j.cej.2014.01.012

    Article  CAS  Google Scholar 

  27. Choudhary VR, Tillu VH, Narkhede VS, Borate HB, Wakharkar RD (2003) Microwave assisted solvent-free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported \(\text{ FeCl }_{3}\) catalyst. Catal Commun 4:449–453. https://doi.org/10.1016/S1566-7367(03)00111-0

    Article  CAS  Google Scholar 

  28. Singh V, Sapehiyia V, Srivastava V, Kaur S (2006) \(\text{ ZrO }_{2}\)-pillared clay: an efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catal Commun 7:571–578. https://doi.org/10.1016/j.catcom.2005.12.021

    Article  CAS  Google Scholar 

  29. Bigdeli MA, Jafari S, Mahdavinia GH, Hazakhani H (2007) Trichloroisocyanuric acid, a new and efficient catalyst for the synthesis of dihydropyrimidinones. Catal Commun 8:1641–1644. https://doi.org/10.1016/j.catcom.2007.01.022

    Article  CAS  Google Scholar 

  30. Kamal A, Krishnaji T, Azhar MA (2007) Copper(II) tetrafluoroborate as a mild and efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(\(1H\))-ones under solvent-free conditions. Catal Commun 8:1929–1933. https://doi.org/10.1016/j.catcom.2007.03.009

    Article  CAS  Google Scholar 

  31. Salim SD, Akamanchi KG (2011) Sulfated tungstate: an alternative, eco-friendly catalyst for Biginelli reaction. Catal Commun 12:1153–1156. https://doi.org/10.1016/j.catcom.2011.02.018

    Article  CAS  Google Scholar 

  32. Ramachandran V, Arumugasamy K, Singh SK, Edayadulla N, Ramesh P, Kamaraj S (2016) Synthesis, antibacterial studies, and molecular modeling studies of 3,4-dihydropyrimidinone compounds. J Chem Biol 9:31–40. https://doi.org/10.1007/s12154-015-0142-4

    Article  PubMed  Google Scholar 

  33. Saikia M, Bhuyan D, Saikia L (2015) Keggin type phosphotungstic acid encapsulated chromium (III) terephthalate metal organic framework as active catalyst for Biginelli condensation. Appl Catal A Gen 505:501–506. https://doi.org/10.1016/j.apcata.2015.05.021

    Article  CAS  Google Scholar 

  34. Khabazzadeh H, Saidi K, Sheibani H (2008) Microwave-assisted synthesis of dihydropyrimidin-2\((1H)\)-ones using graphite supported lanthanum chloride as a mild and efficient catalyst. Bioorg Med Chem Lett 18:278–280. https://doi.org/10.1016/j.bmcl.2007.10.087

    Article  PubMed  CAS  Google Scholar 

  35. Ahn BJ, Gang MS, Chae K, Oh Y, Shin J, Chang W (2008) A microwave-assisted synthesis of 3,4-dihydro-pyrimidin-2-\((1H)\)-ones catalyzed by \(\text{ FeCl }_{3}\)-supported Nanopore Silica under solvent-free conditions. J Ind Eng Chem 14:401–405. https://doi.org/10.1016/j.jiec.2008.01.008

    Article  CAS  Google Scholar 

  36. Wang JH, Zhang E, Tang GM, Wang YT, Cui YZ, Ng SW (2016) Novel bipyridinyl oxadiazole-based metal coordination complexes: high efficient and green synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones through the Biginelli reactions. J Solid State Chem 241:86–98. https://doi.org/10.1016/j.jssc.2016.05.009

    Article  CAS  Google Scholar 

  37. Kumar PM, Kumar KS, Poreddy SR, Mohakhud PK, Mukkanti K, Pal M (2011) Biginelli reaction beyond three-component limit: synthesis of functionalized pyrimidinones via a one-pot Biginelli-Pd mediated C-C coupling strategy. Tetrahedron Lett 52:1187–1191. https://doi.org/10.1016/j.tetlet.2011.01.015

    Article  CAS  Google Scholar 

  38. Zhan HW, Wang JX, Wang XT (2008) Solvent- and catalyst-free synthesis of dihydropyrimidinthiones in one-pot under focused microwave irradiation conditions. Chin Chem Lett 19:1183–1185. https://doi.org/10.1016/j.cclet.2008.06.039

    Article  CAS  Google Scholar 

  39. Bigdeli MA, Gholami G, Sheikhhosseini E (2011) \(P\)-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli reaction in water and under solvent free conditions. Chin Chem Lett 22:903–906. https://doi.org/10.1016/j.cclet.2010.12.030

    Article  CAS  Google Scholar 

  40. Elhamifar D, Hosseinpoor F, Karimi B, Hajati S (2015) Ionic liquid-based ordered mesoporous organosilica-supported copper as a novel and efficient nanocatalyst for the one-pot synthesis of Biginelli products. Micropor Mesopor Mat 204:269–275. https://doi.org/10.1016/j.micromeso.2014.11.011

    Article  CAS  Google Scholar 

  41. Chen W, Qin S, Jin J (2007) HBF4-catalyzed Biginelli reaction: one-pot synthesis of dihydropyrimidin-2(1H)-ones under solvent-free conditions. Catal Commun 8:123–126. https://doi.org/10.1016/j.catcom.2006.05.026

    Article  CAS  Google Scholar 

  42. Kalita HR, Phukan P (2007) CuI as reusable catalyst for the Biginelli reaction. Catal Commun 8:179–182. https://doi.org/10.1016/j.catcom.2006.06.004

    Article  CAS  Google Scholar 

  43. Kargar M, Hekmatshoar R, Mostashari A, Hashemi Z (2011) Efficient and greensynthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones/thiones using imidazol-1-yl-acetic acid as a novel, reusable and water-soluble organocatalyst. Catal Commun 15:123–126. https://doi.org/10.1016/j.catcom.2011.08.022

    Article  CAS  Google Scholar 

  44. Tayebee R, Maleki B, Ghadamgahi M (2012) Ammonium dihydrogen phosphate catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones. Chin J Catal 33:659–665. https://doi.org/10.1016/S1872-2067(11)60355-0

    Article  CAS  Google Scholar 

  45. Barbosa FAR, Canto RFS, Saba S, Rafique J, Braga AL (2016) Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease. Bioorg Med Chem 24:5762–5770. https://doi.org/10.1016/j.bmc.2016.09.031

    Article  PubMed  CAS  Google Scholar 

  46. Su W, Li J, Zheng Z, Shen Y (2005) One-pot synthesis of dihydropyrimidiones catalyzed by strontium(II) triflate under solvent-free conditions. Tetrahedron Lett 46:6037–6040. https://doi.org/10.1016/j.tetlet.2005.07.021

    Article  CAS  Google Scholar 

  47. Ahmed N, van Lier JE (2007) \(\text{ TaBr }_{5}\)-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Tetrahedron Lett 48:5407–5409. https://doi.org/10.1016/j.tetlet.2007.06.005

    Article  CAS  Google Scholar 

  48. Liberto NA, Silva SP, Fátima AD, Fernandes SA (2013) \(\upbeta \)-Cyclodextrin-assisted synthesis of Biginelli adducts under solvent-free conditions. Tetrahedron 69:8245–8249. https://doi.org/10.1016/j.tet.2013.07.024

    Article  CAS  Google Scholar 

  49. Banik BK, Reddy AT, DattaA Mukhopadhyay C (2007) Microwave-induced bismuth nitrate-catalyzed synthesis of dihydropyrimidones via Biginelli condensation under solventless conditions. Tetrahedron Lett 48:7392–7394. https://doi.org/10.1016/j.tetlet.2007.08.007

    Article  CAS  Google Scholar 

  50. Polshettiwar V, Varma RS (2007) Biginelli reaction in aqueous medium: a greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 48:7343–7346. https://doi.org/10.1016/j.tetlet.2007.08.031

    Article  CAS  Google Scholar 

  51. Zhang H, Zhou Z, Yao Z, Xu F, Shen Q (2009) Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solvent-free conditions. Tetrahedron Lett 50:1622–1624. https://doi.org/10.1016/j.tetlet.2009.01.103

    Article  CAS  Google Scholar 

  52. Ghosh BK, Hazra S, Ghosh NN (2016) Synthesis of Cu@CF@SBA15: a Versatile catalysts for (i) reduction of dyes, trifluralin, Synthesis of (ii) DHPMs by Biginelli reaction and (iii) 1,2,3-triazole derivatives by ‘Click reaction’. Catal Commun 80:44–48. https://doi.org/10.1016/j.catcom.2016.03.016

    Article  CAS  Google Scholar 

  53. Shirini F, Abedini M, Pourhasan-Kisomi R (2014) \(N\)-Sulfonic acid poly(4-vinylpyridinium) chloride as a highly efficient and reusable catalyst for the Biginelli reaction. Chin Chem Lett 25:111–114. https://doi.org/10.1016/j.cclet.2013.09.005

    Article  CAS  Google Scholar 

  54. Dondoni A, Massi A (2001) Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction. Tetrahedron Lett 42:7975–7978. https://doi.org/10.1016/S0040-4039(01)01728-2

    Article  CAS  Google Scholar 

  55. Sari O, Roy V, Métifiot M, Marchand C, Pommier Y, Bourg S, Bonnet P, Schinazi RF, Agrofoglio LA (2015) Synthesis of dihydropyrimidine \(\upalpha \),\(\gamma \)-diketobutanoic acid derivatives targeting HIV integrase. Eur J Med Chem 104:127–138. https://doi.org/10.1016/j.ejmech.2015.09.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bigi F, Carloni S, Frullanti B, Maggi R, Sartori G (1999) A revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF. Tetrahedron Lett 40:3465–3468. https://doi.org/10.1016/S0040-4039(99)00424-4

    Article  CAS  Google Scholar 

  57. Wu M, Yu J, Zhao W, Wu J, Cao S (2011) One-pot synthesis of difluoromethyl-containing dihydropyrimidinones catalyzed by \(\text{ Yb }(\text{ PFO })_{3}\) under solvent and dehydrating agent free conditions. J Fluorine Chem 132:155–159. https://doi.org/10.1016/j.jfluchem.2010.12.010

    Article  CAS  Google Scholar 

  58. Gong K, Wang H, Wang S, Ren X (2015) \(\upbeta \)-Cyclodextrin-propyl sulfonic acid: a new and eco-friendly catalyst for one-pot multi-component synthesis of 3,4-dihydropyrimidones via Biginelli reaction. Tetrahedron 71:4830–4834. https://doi.org/10.1016/j.tet.2015.05.028

    Article  CAS  Google Scholar 

  59. Shaabani A, Bazgir A, Teimouri F (2003) Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Tetrahedron Lett 44:857–859. https://doi.org/10.1016/S0040-4039(02)02612-6

    Article  CAS  Google Scholar 

  60. Reddy KR, Reddy CV, Mahesh M, Raju PVK, Reddy VVN (2003) New environmentally friendly solvent free synthesis of dihydropyrimidinones catalysed by \(N\)-butyl-\(N\),\(N\)-dimethyl-\(\upalpha \)-phenylethylammonium bromide. Tetrahedron Lett 44:8173–8175. https://doi.org/10.1016/j.tetlet.2003.09.030

    Article  CAS  Google Scholar 

  61. Aswin K, Mansoor SS, Logaiya K, Sudhan PN, Ahmed RN (2014) Facile synthesis of 3,4-dihydropyrimidin-2(1H)-ones and—thiones and indeno[1,2-d]pyrimidines catalyzed by p-dodecylbenzenesulfonic acid. J Taibah Uni Sci 8:236–247. https://doi.org/10.1016/j.jtusci.2014.03.005

    Article  Google Scholar 

  62. Dong F, Jun L, Xinli Z, Zhiwen Y, Zuliang L (2007) One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids. J Mol Catal A Chem 274:208–211. https://doi.org/10.1016/j.molcata.2007.05.014

    Article  CAS  Google Scholar 

  63. Safari J, Gandomi-Ravandi S (2014) A novel protocol for solvent-free synthesis of 4,6-diaryl-3,4-dihydropyrimidine-2(1H)-ones catalyzed by metal oxide-MWCNTs nanocomposites. J Mol Struct 1074:71–78. https://doi.org/10.1016/j.molstruc.2014.05.012

    Article  CAS  Google Scholar 

  64. Niknam K, Hasaninejad A, Arman M (2010) Synthesis of some new bis-3,4-dihydropyrimidin-2(1H)-ones by using silica-supported tin chloride and titanium tetrachloride. Chin Chem Lett 21:399–402. https://doi.org/10.1016/j.cclet.2009.12.008

    Article  CAS  Google Scholar 

  65. Zamani F, Izadi E (2013) Synthesis and characterization of sulfonated-phenylacetic acid coated \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles as a novel acid magnetic catalyst for Biginelli reaction. Catal Commun 42:104–108. https://doi.org/10.1016/j.catcom.2013.08.006

    Article  CAS  Google Scholar 

  66. Harikrishnan PS, Rajesh SM, Perumal S, Almansour AI (2013) A microwave-mediated catalyst- and solvent-free regioselective Biginelli reaction in the synthesis of highly functionalized novel tetrahydropyrimidines. Tetrahedron Lett 54:1076–1079. https://doi.org/10.1016/j.tetlet.2012.12.034

    Article  CAS  Google Scholar 

  67. Keivanloo A, Mirzaee M, Bakherad M, Soozani A (2014) Boehmite nanoparticle catalyst for the one-pot multicomponent synthesis of 3,4-dihydropyrimidin-2-\((1H)\)-ones and thiones under solvent-free conditions. Chin J Catal 35:362–367. https://doi.org/10.1016/S1872-2067(12)60759-1

    Article  CAS  Google Scholar 

  68. Kolvari E, Koukabi N, Armandpour O (2014) A simple and efficient synthesis of 3,4-dihydropyrimidin-2-\((1H)\)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron 70:1383–1386. https://doi.org/10.1016/j.tet.2013.10.085

    Article  CAS  Google Scholar 

  69. Ghasemi Z, Farshbaf Orafa F, PirouzmandM Zarrini G, Nikzad Kojanag B, Salehi R (2015) \(\text{ Zn }^{2+}\)/MCM-41 catalyzed Biginelli reaction of heteroaryl aldehydes and evaluation of the antimicrobial activity and cytotoxicity of the pyrimidone products. Tetrahedron Lett 56:6393–6396. https://doi.org/10.1016/j.tetlet.2015.09.143

    Article  CAS  Google Scholar 

  70. Tamaddon F, Moradi S (2013) Controllable selectivity in Biginelli and Hantzsch reactions using nanoZnO as a structure base catalyst. J Mol Catal A Chem 370:117–122. https://doi.org/10.1016/j.molcata.2012.12.005

    Article  CAS  Google Scholar 

  71. Amini MM, Shaabani A, Bazgir A (2006) Tangstophosphoric acid (\(\text{ H }_{3}\text{ PW }_{12}\text{ O }_{40})\): an efficient and eco-friendly catalyst for the one-pot synthesis of dihydropyrimidin-2(1H)-ones. Catal Commun 7:843–847. https://doi.org/10.1016/j.catcom.2006.02.027

    Article  CAS  Google Scholar 

  72. Singh OM, Singh SJ, Devi MB, Devi LN, Singh NI, Lee SG (2008) Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg Med Chem Lett 18:6462–6467. https://doi.org/10.1016/j.bmcl.2008.10.063

    Article  PubMed  CAS  Google Scholar 

  73. Verma S, Jain SL, Sain B (2010) PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4-dihydropyrimidinones. Tetrahedron Lett 51:6897–6900. https://doi.org/10.1016/j.tetlet.2010.10.124

    Article  CAS  Google Scholar 

  74. Reddy BM, Sreekanth PM, Lakshmanan P (2005) Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. J Mol Catal A: Chem 237:93–100. https://doi.org/10.1016/j.molcata.2005.04.039

    Article  CAS  Google Scholar 

  75. Qiu Y, Sun H, Ma Z, Xia W (2014) Efficient, stable, and reusable Lewis acid-surfactant-combined catalyst: one-pot Biginelli and solvent-free esterification reactions. J Mol Catal A Chem 392:76–82. https://doi.org/10.1016/j.molcata.2014.04.031

    Article  CAS  Google Scholar 

  76. Bose AK, Pednekar S, Ganguly SN, Chakraborty G, Manhas MS (2004) A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry’. Tetrahedron Lett 45:8351–8353. https://doi.org/10.1016/j.tetlet.2004.09.064

    Article  CAS  Google Scholar 

  77. Prodius D, Macaev F, Mereacre V, Shova S, Lutsenco Y, Styngach E, Ruiz P, Muraviev D, Lipkowski J, Simonov YA, Turta C (2009) Synthesis and characterization of \(\{\text{ Fe }_{2}\text{ CuO }\}\) clusters as precursors for nanosized catalytic system for Biginelli reaction. Inorg Chem Commun 12:642–645. https://doi.org/10.1016/j.inoche.2009.05.011

    Article  CAS  Google Scholar 

  78. Moghaddas M, Davoodnia A, Heravi MM, Tavakoli-Hoseini N (2012) Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3,4-dihydropyrimidin-2 (1H)-ones and-thiones. Chin J Catal 33:706–710. https://doi.org/10.1016/S1872-2067(11)60377-X

    Article  CAS  Google Scholar 

  79. Jetti SR, Bhatewara A, Kadre T, Jain S (2014) Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions. Chin Chem Lett 25:469–473. https://doi.org/10.1016/j.cclet.2013.12.022

    Article  CAS  Google Scholar 

  80. Rostamnia S, Lamei K (2012) Diketene-based neat four-component synthesis of the dihydropyrimidinones and dihydropyridine backbones using silica sulfuric acid (SSA). Chin Chem Lett 23:930–932. https://doi.org/10.1016/j.cclet.2012.06.008

    Article  CAS  Google Scholar 

  81. Ábrányi-Balogh P, Dancsó A, Frigyes D, Volk B, Keglevich G, Milen M (2014) Convenient synthesis of 1-aryl-9H-\(\upbeta \)-carboline-3-carbaldehydes andtheir transformation into dihydropyrimidinone derivatives by Biginelli reaction. Tetrahedron 70:5711–5719. https://doi.org/10.1016/j.tet.2014.06.073

    Article  CAS  Google Scholar 

  82. Fazaeli R, Tangestaninejad S, Aliyan H, Moghadam M (2006) One-pot synthesis of dihydropyrimidinones using facile and reusable polyoxometalate catalysts for the Biginelli reaction. Appl Catal A Gen 309:44–51. https://doi.org/10.1016/j.apcata.2006.04.043

    Article  CAS  Google Scholar 

  83. Saher L, Makhloufi-Chebli M, Dermeche L, Boutemeur-Khedis B, Rabia C, Silva AMS, Hamdi M (2016) Keggin and Dawson-type polyoxometalates as efficient catalysts for the synthesis of 3,4-dihydropyrimidinones: experimental and theoretical studies. Tetrahedron Lett 57:1492–1496. https://doi.org/10.1016/j.tetlet.2016.02.077

    Article  CAS  Google Scholar 

  84. Benazzouz A, Makhloufi-Chebli M, Khatir-Hamdi N, Boutemeur-Khedis B, Silva AM, Hamdi M (2015) A facile synthesis of new coumarin-3,4-dihydropyrimidin-2(1H)-ones/thiones dyads. Tetrahedron 71:3890–3894. https://doi.org/10.1016/j.tet.2015.04.028

    Article  CAS  Google Scholar 

  85. Rao GBD, Anjaneyulu B, Kaushik MP (2014) A facile one-pot five-component synthesis of glycoside annulated dihydropyrimidinone derivatives with 1,2,3-triazol linkage via transesterification/Biginelli/click reactions in aqueous medium. Tetrahedron Lett 55:19–22. https://doi.org/10.1016/j.tetlet.2013.09.023

    Article  CAS  Google Scholar 

  86. Arunkhamkaew S, Athipornchai A, Apiratikul N, Suksamrarn A, Ajavakom V (2013) Novel racemic tetrahydrocurcuminoid dihydropyrimidinone analogues as potent acetylcholinesterase inhibitors. Bioorg Med Chem Lett 23:2880–2882. https://doi.org/10.1016/j.bmcl.2013.03.069

    Article  PubMed  CAS  Google Scholar 

  87. Fu NY, Yuan YF, Pang ML, Wang JT, Peppe C (2003) Indium(III) halides-catalyzed preparation of ferrocene-dihydropyrimidinones. J Org Chem 672:52–57. https://doi.org/10.1016/S0022-328X(03)00139-6

    Article  CAS  Google Scholar 

  88. Rafiee E, Jafari H (2006) A practical and green approach towards synthesis of dihydropyrimidinones: using heteropoly acids as efficient catalysts. Bioorg Med Chem Lett 16:2463–2466. https://doi.org/10.1016/j.bmcl.2006.01.087

    Article  PubMed  CAS  Google Scholar 

  89. Fustero S, Catalán S, Aceña JL, Pozo CD (2009) A new strategy for the synthesis of fluorinated 3,4-dihydropyrimidinones. J Fluorine Chem 130:1145–1150. https://doi.org/10.1016/j.jfluchem.2009.06.001

    Article  CAS  Google Scholar 

  90. Fu NY, Yuan YF, Cao Z, Wang SW, Wang JT, Peppe C (2002) Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction. Tetrahedron 58:4801–4807. https://doi.org/10.1016/S0040-4020(02)00455-6

    Article  CAS  Google Scholar 

  91. Cepanec I, Litvić M, Bartolinčić A, Lovrić M (2005) Ferric chloride/tetraethyl orthosilicate as an efficient system for synthesis of dihydropyrimidinones by Biginelli reaction. Tetrahedron 61:4275–4280. https://doi.org/10.1016/j.tet.2005.02.059

    Article  CAS  Google Scholar 

  92. Cepanec I, Litvić M, Filipan-Litvić M, Grüngold I (2007) Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron 63:11822–11827. https://doi.org/10.1016/j.tet.2007.09.045

    Article  CAS  Google Scholar 

  93. Singh K, Singh S (2008) Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron 64:11718–11723. https://doi.org/10.1016/j.tet.2007.09.045

    Article  CAS  Google Scholar 

  94. Lu J, Bai Y, Wang Z, Yang B, Ma H (2000) One-pot synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones using lanthanum chloride as a catalyst. Tetrahedron Lett 41:9075–9078. https://doi.org/10.1016/S0040-4039(00)01645-2

    Article  CAS  Google Scholar 

  95. Reddy CV, Mahesh M, Raju PVK, Babu TR, Reddy VVN (2002) Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones. Tetrahedron Lett 43:2657–2659. https://doi.org/10.1016/S0040-4039(02)00280-0

    Article  CAS  Google Scholar 

  96. Maiti G, Kundu P, Guin C (2003) One-pot synthesis of dihydropyrimidinones catalysed by lithium bromide: an improved procedure for the Biginelli reaction. Tetrahedron Lett 44:2757–2758. https://doi.org/10.1016/S0040-4039(02)02859-9

    Article  CAS  Google Scholar 

  97. Salehi P, Dabiri M, Zolfigol MA, Bodaghi Fard MA (2003) Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones. Tetrahedron Lett 44:2889–2891. https://doi.org/10.1016/S0040-4039(03)00436-2

    Article  CAS  Google Scholar 

  98. Abelman MM, Smith SC, James DR (2003) Cyclic ketones and substituted \(\upalpha \)-keto acids as alternative substrates for novel Biginelli-like scaffold syntheses. Tetrahedron Lett 44:4559–4562. https://doi.org/10.1016/S0040-4039(03)00985-7

    Article  CAS  Google Scholar 

  99. Bhosale RS, Bhosale SV, Bhosale SV, Wang T, Zubaidha PK (2004) An efficient, high yield protocol for the one-pot synthesis of dihydropyrimidin-2\((1H)\)-ones catalyzed by iodine. Tetrahedron Lett 45:9111–9113. https://doi.org/10.1016/j.tetlet.2004.10.021

    Article  CAS  Google Scholar 

  100. Bose AK, Manhas MS, Pednekar S, Ganguly SN, Dang H, He W, Mandadi A (2005) Large scale Biginelli reaction via water-based biphasic media: a green chemistry strategy. Tetrahedron Lett 46:1901–1903. https://doi.org/10.1016/j.tetlet.2005.01.087

    Article  CAS  Google Scholar 

  101. Mabry J, Ganem B (2006) Studies on the Biginelli reaction: a mild and selective route to 3,4-dihydropyrimidin-2\((1H)\)-ones via enamine intermediates. Tetrahedron Lett 47:55–56. https://doi.org/10.1016/j.tetlet.2005.10.124

    Article  CAS  Google Scholar 

  102. Mandhane PG, Joshi RS, Nagargoje DR, Gill CH (2010) An efficient synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones catalyzed by thiamine hydrochloride in water under ultrasound irradiation. Tetrahedron Lett 51:3138–3140. https://doi.org/10.1016/j.tetlet.2010.04.037

    Article  CAS  Google Scholar 

  103. Russowsky D, Canto RFS, Sanches SAA, Doca MGM, Fátima AD, Pilli RA, Kohn LK, Antônio MA, Carvalho JED (2006) Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorg Chem 34:173–182. https://doi.org/10.1016/j.bioorg.2006.04.003

    Article  PubMed  CAS  Google Scholar 

  104. Chitra S, Devanathan D, Pandiarajan K (2010) Synthesis and in vitro microbiological evaluation of novel 4-aryl-5-isopropoxycarbonyl-6-methyl-3,4-dihydropyrimidinones. Eur J Med Chem 45:367–371. https://doi.org/10.1016/j.ejmech.2009.09.018

    Article  PubMed  CAS  Google Scholar 

  105. Lin HX, Zhao QJ, Xu B, Wang XH (2007) A green synthesis of dihydropyrimidinones by Biginelli reaction over Nafion-H catalyst. Chin Chem Lett 18:502–504. https://doi.org/10.1016/j.cclet.2007.03.022

    Article  CAS  Google Scholar 

  106. Ghosh R, Maiti S, Chakraborty A (2004) In\((\text{ OTf })_{3}\)-catalysed one-pot synthesis of 3,4-dihydropyrimidin-2(lH)-ones. J Mol Catal A: Chem 217:47–50. https://doi.org/10.1016/j.molcata.2004.02.025

    Article  CAS  Google Scholar 

  107. Zhang X, Li Y, Liu C, Wang J (2006) An efficient synthesis of 4-substituted pyrazolyl-3,4-dihydropyrimidin-2(1H)-(thio)ones catalyzed by \(\text{ Mg }(\text{ ClO }_{4})_{2}\) under ultrasound irradiation. J Mol Catal A: Chem 253:207–211. https://doi.org/10.1016/j.molcata.2006.03.018

    Article  CAS  Google Scholar 

  108. Jain SL, Joseph JK, Singhal S, Sain B (2007) Metallophthalocyanines (MPcs) as efficient heterogeneous catalysts for Biginelli condensation: application and comparison in catalytic activity of different MPcs for one pot synthesis of 3,4-dihydropyrimidin-2-\((1H)\)-ones. J Mol Catal A Chem 268:134–138. https://doi.org/10.1016/j.molcata.2006.12.015

    Article  CAS  Google Scholar 

  109. Rajack A, Yuvaraju K, Praveen C, Murthy YLN (2013) A facile synthesis of 3,4-dihydropyrimidinones/thiones and novel \(N\)-dihydro pyrimidinone-decahydroacridine-1,8-diones catalyzed by cellulose sulfuric acid. J Mol Catal A Chem 370:197–204. https://doi.org/10.1016/j.molcata.2013.01.003

    Article  CAS  Google Scholar 

  110. Heravi MM, Bakhtiari K, Bamoharram FF (2006) 12-Molybdophosphoric acid: a recyclable catalyst for the synthesis of Biginelli-type 3,4-dihydropyrimidine-2(1H)-ones. Catal Commun 7:373–376. https://doi.org/10.1016/j.catcom.2005.12.007

    Article  CAS  Google Scholar 

  111. Barrow JC, Glass KL, Selnick HG, Freidinger RM, Chang RSL, O’Malley SS, Woyden C (2000) Preparation and evaluation of 1,3-diaminocyclopentane-linked dihydropyrimidinone derivatives as selective \(\upalpha \)1a-receptor antagonists. Bioorg Med Chem Lett 10:1917–1920. https://doi.org/10.1016/S0960-894X(00)00374-7

    Article  PubMed  CAS  Google Scholar 

  112. Sabitha G, Reddy GSKK, Reddy KB, Yadav JS (2003) Vanadium(III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-\((2H)\)-ones. Tetrahedron Lett 44:6497–6499. https://doi.org/10.1016/S0040-4039(03)01564-8

    Article  CAS  Google Scholar 

  113. Jenner G (2004) Effect of high pressure on Biginelli reactions. Steric hindrance and mechanistic considerations. Tetrahedron Lett 45:6195–6198. https://doi.org/10.1016/j.tetlet.2004.05.106

    Article  CAS  Google Scholar 

  114. Frija LMT, Khmelinskii IV, Cristiano MLS (2005) Novel efficient synthesis of 3,4-dihydro-6-substituted-3-phenylpyrimidin-2\((1H)\)-ones. Tetrahedron Lett 46:6757–6760. https://doi.org/10.1016/j.tetlet.2005.07.101

    Article  CAS  Google Scholar 

  115. Sabitha G, Reddy KB, Yadav JS, Shailaja D, Sivudu KS (2005) Ceria/vinylpyridine polymer nanocomposite: an ecofriendly catalyst for the synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones. Tetrahedron Lett 46:8221–8224. https://doi.org/10.1016/j.tetlet.2005.09.100

    Article  CAS  Google Scholar 

  116. Debache A, Boumoud B, Amimour M, Belfaitah A, Rhouati S, Carboni B (2006) Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction. Tetrahedron Lett 47:5697–5699. https://doi.org/10.1016/j.tetlet.2006.06.015

    Article  CAS  Google Scholar 

  117. Suzuki I, Suzumura Y, Takeda K (2006) Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water. Tetrahedron Lett 47:7861–7864. https://doi.org/10.1016/j.tetlet.2006.09.019

    Article  CAS  Google Scholar 

  118. Singh K, Arora D, Singh S (2007) A highly regio- and chemoselective addition of carbon nucleophiles to pyrimidinones. A new route to C4 elaborated Biginelli compounds. Tetrahedron Lett 48:1349–1352. https://doi.org/10.1016/j.tetlet.2006.12.111

    Article  CAS  Google Scholar 

  119. Tamaddon F, Razmi Z, Jafari AA (2010) Synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones and 1,4-dihydropyridines using ammonium carbonate in water. Tetrahedron Lett 51:1187–1189. https://doi.org/10.1016/j.tetlet.2009.12.098

    Article  CAS  Google Scholar 

  120. Konkala K, Sabbavarapu NM, Katla R, Durga NYV, Reddy TVK, Devi B, Rachapudi BNP (2012) Revisit to the Biginelli reaction: a novel and recyclable bioglycerol-based sulfonic acid functionalized carbon catalyst for one-pot synthesis of substituted 3,4-dihydropyrimidin-2-\((1H)\)-ones. Tetrahedron Lett 53:1968–1973. https://doi.org/10.1016/j.tetlet.2012.02.018

    Article  CAS  Google Scholar 

  121. Singh K, Singh K, Trappanese DM, Moreland RS (2012) Highly regioselective synthesis of N-3 organophosphorous derivatives of3,4-dihydropyrimidin-2\((1H)\)-ones and their calcium channel binding studies. Eur J Med Chem 54:397–402. https://doi.org/10.1016/j.ejmech.2012.05.017

    Article  PubMed  CAS  Google Scholar 

  122. Treptow TGM, Figueiró F, Jandrey EHF, Battastini AMO, Salbego CG, Hoppe JB, Taborda PS, Rosa SB, Piovesan LA (2015) Novel hybrid DHPM-fatty acids: synthesis and activity against glioma cell growth invitro. Eur J Med Chem 95:552–562. https://doi.org/10.1016/j.ejmech.2015.03.062

    Article  PubMed  CAS  Google Scholar 

  123. Ghorbani-Choghamarani A, Zamani P (2013) Three component reactions: an efficient and green synthesis of 3,4-dihydropyrimidin-2-\((1H)\)-ones and thiones using silica gel-supported l-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate. Chin Chem Lett 24:804–808. https://doi.org/10.1016/j.cclet.2013.05.033

    Article  CAS  Google Scholar 

  124. Gupta P, Paul S (2012) Sulfonated carbon/silica composite functionalized Lewis acids for one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles, 3,4-dihydropyrimidin-2\((1H)\)-ones and for Michael addition of indole to \(\upalpha \),\(\upbeta \)-unsaturated ketones. J Mol Catal A: Chem 352:75–80. https://doi.org/10.1016/j.molcata.2011.10.016

    Article  CAS  Google Scholar 

  125. Ahmed N, Siddiqui ZN (2014) Sulphated silica tungstic acid as a highly efficient and recyclable solid acid catalyst for the synthesis of tetrahydropyrimidines and dihydropyrimidines. J Mol Catal A: Chem 387:45–56. https://doi.org/10.1016/j.molcata.2014.02.019

    Article  CAS  Google Scholar 

  126. Medyouni R, Elgabsi W, Naouali O, Romerosa A, Al-Ayed AS, Baklouti L, Hamdi N (2016) One-pot three-component Biginelli-type reaction to synthesize 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by Co phthalocyanines: Synthesis, characterization, aggregation behavior and antibacterial activity. Spectrochim Acta A167:165–174. https://doi.org/10.1016/j.saa.2016.04.045

    Article  CAS  Google Scholar 

  127. Maradur SP, Gokavi GS (2007) Heteropoly acid catalyzed synthesis of 3,4-dihydropyrimidin-2\((1H)\)-ones. Catal Commun 8:279–284. https://doi.org/10.1016/j.catcom.2006.05.048

    Article  CAS  Google Scholar 

  128. Savanur HM, Kalkhambkar RG, Aridoss G, Laali KK (2016) [bmim(\(\text{ SO }_{3}\)H)][OTf]/[bmim][X] and Zn(\(\text{ NTf }_{2})_{2}\)/[bmim][X] (X = \(\text{ PF }_{6}\) and \(\text{ BF }_{4})\); efficient catalytic systems for the synthesis of tetrahydropyrimidin-ones (-thiones) via the Biginelli reaction. Tetrahedron Lett 57:3029–3035. https://doi.org/10.1016/j.tetlet.2016.05.103

    Article  CAS  Google Scholar 

  129. Titova Y, Fedorova O, Rusinov G, Vigorov A, Krasnov V, Murashkevich A, Charushin V (2015) Effect of nanosized \(\text{ TiO }_{2}\)-\(\text{ SiO }_{2}\) covalently modified by chiral molecules on the asymmetric Biginelli reaction. Catal Today 241:270–274. https://doi.org/10.1016/j.cattod.2014.01.035

    Article  CAS  Google Scholar 

  130. Steele TG, Coburn CA, Patane MA, Bock MG (1998) Expedient synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2\((1H)\)-ones. Tetrahedron Lett 39:9315–9318. https://doi.org/10.1016/S0040-4039(98)02155-8

    Article  CAS  Google Scholar 

  131. Kumar A, Maurya RA (2007) An efficient bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-\((1H)\)-ones. Tetrahedron Lett 48:4569–4571. https://doi.org/10.1016/j.tetlet.2007.04.130

    Article  CAS  Google Scholar 

  132. Joseph JK, Jain SL, Sain B (2006) Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: an improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones. J Mol Catal A Chem 247:99–102. https://doi.org/10.1016/j.molcata.2005.11.028

    Article  CAS  Google Scholar 

  133. Shen P, Xu M, Yin D, Xie S, Zhou C, Li F (2016) Halogenated macroporous sulfonic resins as efficient catalysts for the Biginelli reaction. Catal Commun 77:18–21. https://doi.org/10.1016/j.catcom.2016.01.010

    Article  CAS  Google Scholar 

  134. Saloutin I, Burgart YV, Kuzueva OG, Kappe CO, Chupakhin ON (2000) Biginelli condensations of fluorinated 3-oxo esters and 1,3-diketones. J Fluorine Chem 103:17–23. https://doi.org/10.1016/S0022-1139(99)00216-X

    Article  CAS  Google Scholar 

  135. Ryabukhin SV, Plaskon AS, Ostapchuk EN, Volochnyuk DM, Shishkin OV, Tolmachev AA (2008) \(\text{ CF }_{3}\)-substituted 1,3-dicarbonyl compounds in the Biginelli reaction promoted by chlorotrimethylsilane. J Fluorine Chem 129:625–631. https://doi.org/10.1016/j.jfluchem.2008.05.004

    Article  CAS  Google Scholar 

  136. Legeay JC, Vanden E, Bazureau JP (2008) Ionic liquid phase organic synthesis (IoLiPOS) methodology applied to the preparation of new 3,4-dihydropyrimidine-2\((1H)\)-ones bearing bioisostere group in N-3 position. Tetrahedron 64:5328–5335. https://doi.org/10.1016/j.tet.2008.03.021

    Article  CAS  Google Scholar 

  137. Legeay JC, Vanden Eynde JJ, Bazureau JP (2007) A new approach to N-3 functionalized 3,4-dihydropyrimidine-2\((1H)\)-ones with 1,2,4-oxadiazole group as amide isostere via ionic liquid-phase technology. Tetrahedron Lett 48:1063–1068. https://doi.org/10.1016/j.tetlet.2006.11.148

    Article  CAS  Google Scholar 

  138. Shaabani A, Seyyedhamzeh M, Maleki A, Hajishaabanha F (2010) Diketene as an alternative substrate for a new Biginelli-like multicomponent reaction: one-pot synthesis of 5-carboxamide substituted 3,4-dihydropyrimidine-2\((1H)\)ones. Tetrahedron 66:4040–4042. https://doi.org/10.1016/j.tet.2010.04.028

    Article  CAS  Google Scholar 

  139. Xu DZ, Li H, Wang Y (2012) Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: asymmetric synthesis of dihydropyrimidines. Tetrahedron 68:7867–7872. https://doi.org/10.1016/j.tet.2012.07.027

    Article  CAS  Google Scholar 

  140. Zhang A, Zhang L, Duan X, Yan X, Yan Y, Liu Q, Liu T, Zhang G (2015) Iron-catalyzed four-member multicomponent reaction for assembly of (\(E)\)-6-arylvinyl-3,4-dihydropyrimidin-2\((1H)\)-ones. Tetrahedron 71:7745–7751. https://doi.org/10.1016/j.tet.2015.07.039

    Article  CAS  Google Scholar 

  141. Suzuki I, Iwata Y, Takeda K (2008) Biginelli reactions catalyzed by hydrazine type organocatalyst. Tetrahedron Lett 49:3238–3241. https://doi.org/10.1016/j.tetlet.2008.03.080

    Article  CAS  Google Scholar 

  142. Zych AJ, Wang HJ, Sakwa SA (2010) Synthesis and Suzuki–Miyaura reactions of 5-halo-3,4-dihydropyrimidin-2\((1H)\)-ones. Tetrahedron Lett 51:5103–5105. https://doi.org/10.1016/j.tetlet.2010.07.093

    Article  CAS  Google Scholar 

  143. Rao GBD, Acharya BN, Verma SK, Kaushik MP (2011) \(N\),\(N^\prime \)-Dichlorobis(2,4,6-trichlorophenyl)urea (CC-2) as a new reagent for the synthesis of pyrimidone and pyrimidine derivatives via Biginelli reaction. Tetrahedron Lett 52:809–812. https://doi.org/10.1016/j.tetlet.2010.12.039

    Article  CAS  Google Scholar 

  144. Kolosov MA, Kulyk OG, Al-Ogaili MJK, Orlov VD (2015) An effective Biginelli-type synthesis of 1-methoxy-3,4-dihydropyrimidin-2\((1H)\)-ones. Tetrahedron Lett 56:4666–4669. https://doi.org/10.1016/j.tetlet.2015.06.041

    Article  CAS  Google Scholar 

  145. Zorkun S, Saraç S, Çelebi S, Erol K (2006) Synthesis of 4-aryl-3,4-dihydropyrimidin-2\((1H)\)-thione derivatives as potential calcium channel blockers. Bioorg Med Chem 14:8582–8589. https://doi.org/10.1016/j.bmc.2006.08.031

    Article  PubMed  CAS  Google Scholar 

  146. Siddiqui ZN (2013) Bis[(L)prolinato-N, O]Zn-water: a green catalytic system for the synthesis of 3,4-dihydropyrimidin-2 (\(1H)\)-ones via the Biginelli reaction. CR Chim 16:183–188. https://doi.org/10.1016/j.crci.2012.10.008

    Article  CAS  Google Scholar 

  147. Wang X, Quan Z, Wang JK, Zhang Z, Wang M (2006) A practical and green approach toward synthesis of \(N3\)-substituted dihydropyrimidinones: using Aza-Michael addition reaction catalyzed by \(\text{ KF }/\text{ Al }_{2}\text{ O }_{3}\). Bioorg Med Chem Lett 16:4592–4595. https://doi.org/10.1016/j.bmcl.2006.06.006

    Article  PubMed  CAS  Google Scholar 

  148. Hamper BC, Owen TJ (1999) Solid phase synthesis of dihydropyrimidinones and pyrimidinone carboxylic acids from malonic acid resin. Tetrahedron Lett 40:4973–4976. https://doi.org/10.1016/S0040-4039(99),00961-2

    Article  CAS  Google Scholar 

  149. Lacotte P, Buisson DA, Ambroise Y (2013) Synthesis, evaluation and absolute configuration assignment of novel dihydropyrimidin-2-ones as picomolar sodium iodide symporter inhibitors. Eur J Med Chem 62:722–727. https://doi.org/10.1016/j.ejmech.2013.01.043

    Article  PubMed  CAS  Google Scholar 

  150. Ryabukhin SV, Plaskon AS, Bondarenko SS, Ostapchuk EN, Grygorenko OO, Shishkin OV, Tolmachev AA (2010) Acyl pyruvates as synthons in the Biginelli reaction. Tetrahedron Lett 51:4229–4232. https://doi.org/10.1016/j.tetlet.2010.06.032

    Article  CAS  Google Scholar 

  151. Singh K, Singh S (2006) A mild and practical method for the regioselective synthesis of N-acylated 3,4-dihydropyrimidin-2-ones. New acyl transfer reagents. Tetrahedron Lett 47:8143–8146. https://doi.org/10.1016/j.tetlet.2006.09.039

    Article  CAS  Google Scholar 

  152. Kappe CO (2000) Highly versatile solid phase synthesis of biofunctional 4-aryl-3,4-dihydropyrimidines using resin-bound isothiourea building blocks and multidirectional resin cleavage. Bioorg Med Chem Lett 10:49–51. https://doi.org/10.1016/S0960-894X(99)00572-7

    Article  PubMed  CAS  Google Scholar 

  153. Kiss K, Csámpai A, Sohár P (2010) New ferrocenyl-substituted heterocycles. Formation under Biginelli conditions, DFT modelling, and structure determination. J Organomet Chem 695:1852–1857. https://doi.org/10.1016/j.jorganchem.2010.04.036

    Article  CAS  Google Scholar 

  154. Savithri A, Chinnan CN, Varma L (2015) Synthesis of dihydropyrimidine derivatives of calix[4]arene via adaptation of Biginelli-3-component reaction. Tetrahedron 71:9667–9672. https://doi.org/10.1016/j.tet.2015.10.066

    Article  CAS  Google Scholar 

  155. Wang G, Yan C, Wang D, Li D, Lu Y (2012) Specific binding of a dihydropyrimidinone derivative with DNA: spectroscopic, calorimetric and modeling investigations. J Lumin 132:1656–1662. https://doi.org/10.1016/j.jlumin.2012.02.021

    Article  CAS  Google Scholar 

  156. Stefani HA, Oliveira CB, Almeida RB, Pereira CMP, Braga RC, Cella R, Borges VC, Savegnago L, Nogueira CW (2006) Dihydropyrimidin-(\(2H\))-ones obtained byultrasound irradiation: anew class ofpotential antioxidant agents. Eur J MedChem 41:513–518. https://doi.org/10.1016/j.ejmech.2006.01.007

    Article  CAS  Google Scholar 

  157. Schmidt RJ, Lombardo LJ, Traeger SC, Williams DK (2008) One-pot two step synthesis of 5-cyano-dihydropyrimidinones using polyphosphate ester. Tetrahedron Lett 49:3009–3010. https://doi.org/10.1016/j.tetlet.2008.02.162

    Article  CAS  Google Scholar 

  158. Pasunooti KK, Chai H, Jensen CN, Gorityala BK, Wang S, Liu XW (2011) A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Lett 52:80–84. https://doi.org/10.1016/j.tetlet.2010.10.150

    Article  CAS  Google Scholar 

  159. Li JT, Han JF, Yang JH, Li TS (2003) An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by \(\text{ NH }_{2}\text{ SO }_{3}\text{ H }\) under ultrasound irradiation. Ultrason Sonochem 10:119–122. https://doi.org/10.1016/S1350-4177(03)00092-0

    Article  PubMed  CAS  Google Scholar 

  160. Tajbakhsh M, Mohajerani B, Heravi MM, Ahmadi AN (2005) Natural HEU type zeolite catalyzed Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H) one derivatives. J Mol Catal A Chem 236:216–219. https://doi.org/10.1016/j.molcata.2005.04.033

    Article  CAS  Google Scholar 

  161. Peng J, Deng Y (2001) Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett 42:5917–5919. https://doi.org/10.1016/S0040-4039(01)01139-X

    Article  CAS  Google Scholar 

  162. Swatlowski RP, Rogers RD, Holbrey RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363. https://doi.org/10.1039/B304400A

    Article  Google Scholar 

  163. Li M, Guo WS, Wen LR, Li YF, Yang HZ (2006) One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BMImSac) and structural determination of two products. J Mol Catal A Chem 258:133–138. https://doi.org/10.1016/j.molcata.2006.05.028

    Article  CAS  Google Scholar 

  164. Quan ZJ, Da Y-X, Zhang Z, Wang XC (2009) PS-PEG-\(\text{ SO }_{3}\text{ H }\) as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction. Catal Commun 10:1146–1148. https://doi.org/10.1016/j.catcom.2008.12.017

    Article  CAS  Google Scholar 

  165. Bahekar SS, Kotharkar SA, Shinde DB (2004) One-pot construction of dihydropyrimidinones in ionic liquids. Mendeleev Commun 14:210–212. https://doi.org/10.1070/MC2004v014n05ABEH001895

    Article  CAS  Google Scholar 

  166. Dondoni A, Massi A, Sabbatini S (2001) Towards the synthesis of C-glycosylated dihydropyrimidine libraries via the three-component Biginelli reaction. A novel approach to artificial nucleosides. Tetrahedron Lett 42(2001):4495–4497. https://doi.org/10.1016/S0040-4039(01)00769-9

    Article  CAS  Google Scholar 

  167. Zumpe FL, Flüß M, Schmitz K, Lender A (2007) Propane phosphonic acid anhydride: a new promoter for the one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 48:1421–1423. https://doi.org/10.1016/j.tetlet.2006.12.098

    Article  CAS  Google Scholar 

  168. Garima VPS, Yadav LDS (2010) Biginelli reaction starting directly from alcohols. Tetrahedron Lett 51:6436–6438. https://doi.org/10.1016/j.tetlet.2010.09.141

    Article  CAS  Google Scholar 

  169. Timoshenko VM, Markitanov YM, Shermolovich YG (2011) 2-Oxo-2-polyfluoroalkylethane-1-sulfones and -sulfamides in the Biginelli and ‘retro-Biginelli’ reactions. Tetrahedron Lett 52:6619–6622. https://doi.org/10.1016/j.tetlet.2011.09.143

    Article  CAS  Google Scholar 

  170. Singh K, Arora D, Poremsky E, Lowery J, Moreland RS (2009) N1-Alkylated 3,4-dihydropyrimidine-2(1H)-ones: convenient one-pot selective synthesis and evaluation of their calcium channel blocking activity. Eur J Med Chem 44:1997–2001. https://doi.org/10.1016/j.ejmech.2008.10.002

    Article  PubMed  CAS  Google Scholar 

  171. Zhang L, Xu L, Kim CU (2003) A new approach to the 2,5-diamino-5,6-dihydro-1H-pyrimidine-4-one derivatives: synthesis of TAN-1057A/B and analogs. Tetrahedron Lett 44:5871–5873. https://doi.org/10.1016/S0040-4039(03)01381-9

    Article  CAS  Google Scholar 

  172. Ahmed B, Khan RA, Habibullah Keshari M (2009) An improved synthesis of Biginelli-type compounds via phase-transfer catalysis. Tetrahedron Lett 50:2889–2892. https://doi.org/10.1016/j.tetlet.2009.03.177

    Article  CAS  Google Scholar 

  173. Tu S, Fang F, Miao C, Jiang H, Feng Y, Shi D, Wang X (2003) One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using boric acid as catalyst. Tetrahedron Lett 44:6153–6155. https://doi.org/10.1016/S0040-4039(03)01466-7

    Article  CAS  Google Scholar 

  174. Wang ZT, Xu LW, Xia CG, Wang HQ (2004) Novel Biginelli-like three-component cyclocondensation reaction: efficient synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 45:7951–7953. https://doi.org/10.1016/j.tetlet.2004.08.107

    Article  CAS  Google Scholar 

  175. Chitra S, Pandiarajan K (2009) Calcium fluoride: an efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)thione: an improved high yielding protocol for the Biginelli reaction. Tetrahedron Lett 50:2222–2224. https://doi.org/10.1016/j.tetlet.2009.02.162

    Article  CAS  Google Scholar 

  176. Starcevich JT, Laughlin TJ, Mohan RS (2013) Iron(III) tosylate catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via the Biginelli reaction. Tetrahedron Lett 54:983–985. https://doi.org/10.1016/j.tetlet.2012.12.032

    Article  CAS  Google Scholar 

  177. Nagawade RR, Kotharkar SA, Shinde DB (2005) Titanium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin- 2(1H)-ones and thiones. Mendeleev Commun 15:150–151. https://doi.org/10.1070/MC2005v015n04ABEH002123.

  178. Fang Z, Lam Y (2011) A rapid and convenient synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2-ones and thiones. Tetrahedron 67:1294–1297. https://doi.org/10.1016/j.tet.2010.11.075

    Article  CAS  Google Scholar 

  179. Rodríguez-Domínguez JC, Bernardi D, Kirsch G (2007) \(\text{ ZrCl }_{4}\) or \(\text{ ZrOCl }_{2}\) under neat conditions: optimized green alternatives for the Biginelli reaction. Tetrahedron Lett 48:5777–5780. https://doi.org/10.1016/j.tetlet.2007.06.104

    Article  CAS  Google Scholar 

  180. Paraskar AS, Dewkar GK, Sudalai A (2003) \(\text{ Cu }(\text{ OTf })_{2}\): a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 44:3305–3308. https://doi.org/10.1016/S0040-4039(03)00619-1

    Article  CAS  Google Scholar 

  181. Yarapathi RV, Kurva S, Tammishetti S (2004) Synthesis of 3,4-dihydropyrimidin-2(1H)ones using reusable poly(4-vinylpyridine-co-divinylbenzene)-Cu(II)complex. Catal Commun 5:511–513. https://doi.org/10.1016/j.catcom.2004.06.007

    Article  CAS  Google Scholar 

  182. Heravi MM, Derikvand F, Bamoharram FF (2005) A catalytic method for synthesis of Biginelli-type 3,4-dihydropyrimidin-2(1H)-one using 12-tungstophosphoric acid. J Mol Catal A Chem 242:173–175. https://doi.org/10.1016/j.molcata.2005.08.009

    Article  CAS  Google Scholar 

  183. Kamal A, Malik MS, Bajee S, Azeeza S, Faazil S, Ramakrishna S, Naidu VGM, Vishnuwardhan MVPS (2011) Synthesis and biological evaluation of conformationally flexible as well as restricted dimers of monastrol and related dihydropyrimidones. Eur J Med Chem 46:3274–3281. https://doi.org/10.1016/j.ejmech.2011.04.048

    Article  PubMed  CAS  Google Scholar 

  184. Gijsen HJ, Berthelot D, De Cleyn MA, Geuens I, Brône B, Mercken M (2012) Tricyclic 3,4-dihydropyrimidine-2-thione derivatives as potent TRPA1 antagonists. Bioorg Med Chem Lett 22:797–800. https://doi.org/10.1016/j.bmcl.2011.12.068

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farahnaz K. Behbahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, B., Behbahani, F.K. Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones. Mol Divers 22, 405–446 (2018). https://doi.org/10.1007/s11030-017-9806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9806-z

Keywords

Navigation