Skip to main content

Advertisement

Log in

The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood–brain barrier (BBB) permeability

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Drugs acting on central nervous system (CNS) may take longer duration to reach the market as these compounds have a higher attrition rate in clinical trials due to the complexity of the brain, side effects, and poor blood–brain barrier (BBB) permeability compared to non-CNS-acting compounds. The roles of active efflux transporters with BBB are still unclear. The aim of the present work was to develop a predictive model for BBB permeability that includes the MRP-1 transporter, which is considered as an active efflux transporter. A support vector machine model was developed for the classification of MRP-1 substrates and non-substrates, which was validated with an external data set and Y-randomization method. An artificial neural network model has been developed to evaluate the role of MRP-1 on BBB permeation. A total of nine descriptors were selected, which included molecular weight, topological polar surface area, ClogP, number of hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, P-gp, BCRP, and MRP-1 substrate probabilities for model development. We identified 5 molecules that fulfilled all criteria required for passive permeation of BBB, but they all have a low logBB value, which suggested that the molecules were effluxed by the MRP-1 transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM (2005) Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx 2:554–571. doi:10.1602/neurorx.2.4.554

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davson H, Segal MB (1996) Physiology of the CSF and blood–brain barriers. CRC Press, Boca Raton

    Google Scholar 

  3. Cory Kalvass J, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23:327–338. doi:10.1002/bdd.325

    Article  PubMed  Google Scholar 

  4. Mehdipour AR, Hamidi M (2009) Brain drug targeting: a computational approach for overcoming blood–brain barrier. Drug Discov Today 14:1030–1036. doi:10.1016/j.drudis.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  5. Bickel U (2005) How to measure drug transport across the blood–brain barrier. NeuroRx 2:15–26. doi:10.1602/neurorx.2.1.15

    Article  PubMed  PubMed Central  Google Scholar 

  6. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45. doi:10.1016/j.pharmthera.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  7. Deeley RG, Cole SPC (2006) Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580:1103–1111. doi:10.1016/j.febslet.2005.12.036

    Article  CAS  PubMed  Google Scholar 

  8. Scala S, Akhmed N, Rao US, Paull K, Lan L-B, Dickstein B, Lee J-S, Elgemeie GH, Stein WD, Bates SE (1997) P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol Pharmacol 51:1024–1033. doi:10.1124/mol.51.6.1024

    CAS  PubMed  Google Scholar 

  9. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834. doi:10.1021/jm701122q

    Article  CAS  PubMed  Google Scholar 

  10. Kortagere S, Chekmarev D, Welsh WJ, Ekins S (2008) New predictive models for blood–brain barrier permeability of drug-like molecules. Pharm Res 25:1836–1845. doi:10.1007/s11095-008-9584-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark DE (2003) In silico prediction of blood–brain barrier permeation. Drug Discov Today 8:927–933. doi:10.1016/S1359-6446(03)02827-7

    Article  CAS  PubMed  Google Scholar 

  12. Gerebtzoff G, Seelig A (2006) In silico prediction of blood–brain barrier permeation using the calculated molecular cross-sectional area as main parameter. J Chem Inf Model 46:2638–2650. doi:10.1021/ci0600814

    Article  CAS  PubMed  Google Scholar 

  13. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553. doi:10.1602/neurorx.2.4.541

    Article  PubMed  PubMed Central  Google Scholar 

  14. Muehlbacher M, Spitzer GM, Liedl KR, Kornhuber J (2011) Qualitative prediction of blood–brain barrier permeability on a large and refined dataset. J Comput Aided Mol Des 25:1095–1106. doi:10.1007/s10822-011-9478-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cuadrado MU, Ruiz IL, Gómez-Nieto MA (2007) QSAR models based on isomorphic and nonisomorphic data fusion for predicting the blood brain barrier permeability. J Comput Chem 28:1252–1260. doi:10.1002/jcc.20671

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Zhu H, Oprea TI, Golbraikh A, Tropsha A (2008) QSAR modeling of the blood–brain barrier permeability for diverse organic compounds. Pharm Res 25:1902–1914. doi:10.1007/s11095-008-9609-0

    Article  CAS  PubMed  Google Scholar 

  17. Obrezanova O, Gola JMR, Champness EJ, Segall MD (2008) Automatic QSAR modeling of ADME properties: blood–brain barrier penetration and aqueous solubility. J Comput Aided Mol Des 22:431–440. doi:10.1007/s10822-008-9193-8

    Article  CAS  PubMed  Google Scholar 

  18. Moda TL, Carrara AE, Andricopulo AD (2012) A fragment-based approach for the in silico prediction of blood–brain barrier permeation. J Braz Chem Soc 23:2191–2196. doi:10.1590/S0103-50532013005000001

    Article  CAS  Google Scholar 

  19. Fan Y, Unwalla R, Denny RA, Di L, Kerns EH, Diller DJ, Humblet C (2010) Insights for predicting blood–brain barrier penetration of CNS targeted molecules using QSPR approaches. J Chem Inf Model 50:1123–1133. doi:10.1021/ci900384c

    Article  CAS  PubMed  Google Scholar 

  20. Shen J, Du Y, Zhao Y, Liu G, Tang Y (2008) In silico prediction of blood–brain partitioning using a chemometric method called genetic algorithm based variable selection. QSAR Comb Sci 27:704–717. doi:10.1002/qsar.200710129

    Article  CAS  Google Scholar 

  21. Konovalov DA, Coomans D, Deconinck E, Vander Heyden Y (2007) Benchmarking of QSAR models for blood–brain barrier permeation. J Chem Inf Model 47:1648–1656. doi:10.1021/ci700100f

    Article  CAS  PubMed  Google Scholar 

  22. Guerra A, Páez JA, Campillo NE (2008) Artificial neural networks in ADMET modeling: prediction of blood–brain barrier permeation. QSAR Comb Sci 27:586–594. doi:10.1002/qsar.200710019

    Article  CAS  Google Scholar 

  23. Garg P, Verma J (2006) In silico prediction of blood brain barrier permeability: an artificial neural network model. J Chem Inf Model 46:289–297. doi:10.1021/ci050303i

    Article  CAS  PubMed  Google Scholar 

  24. Yan A, Liang H, Chong Y, Nie X, Yu C (2013) In-silico prediction of blood–brain barrier permeability. SAR QSAR Environ Res 24:61–74. doi:10.1080/1062936X.2012.729224

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Zhu Q-J, Pan J, Yang Y, Wu X-P (2009) A prediction model for blood–brain barrier permeation and analysis on its parameter biologically. Comput Methods Programs Biomed 5:280–287. doi:10.1016/j.cmpb.2009.03.006

    Article  Google Scholar 

  26. Bergstrom CAS, Charman SA, Nicolazzo JA (2012) Computational prediction of CNS drug exposure based on a novel in vivo dataset. Pharm Res 29:3131–3142. doi:10.1007/s11095-012-0806-5

    Article  PubMed  Google Scholar 

  27. Garg P, Dhakne R, Belekar V (2015) Role of breast cancer resistance protein (BCRP) as active efflux transporter on blood–brain barrier (BBB) permeability. Mol Divers 19:163–172. doi:10.1007/s11030-014-9562-2

    Article  CAS  PubMed  Google Scholar 

  28. Leslie EM, Deeley RG, Cole SPC (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237. doi:10.1016/j.taap.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  29. Wijnholds J, Evers R, van Leusden MR, Mol CAAM, Zaman GJR, Mayer U, Beijnen JH, Van Der Valk M, Krimpenfort P, Borst P (1997) Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 3:1275–1279. doi:10.1038/nm1197-1275

    Article  CAS  PubMed  Google Scholar 

  30. Filipits M, Pohl G, Rudas M, Dietze O, Lax S, Grill R, Pirker R, Zielinski CC, Hausmaninger H, Kubista E (2005) Clinical role of multidrug resistance protein 1 expression in chemotherapy resistance in early-stage breast cancer: the Austrian Breast and Colorectal Cancer Study Group. J Clin Oncol 23:1161–1168. doi:10.1200/JCO.2005.03.033

    Article  CAS  PubMed  Google Scholar 

  31. Löscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76. doi:10.1016/j.pneurobio.2005.04.006

    Article  PubMed  Google Scholar 

  32. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127. doi:10.2217/14622416.9.1.105

    Article  CAS  PubMed  Google Scholar 

  33. Sun H, Dai H, Shaik N, Elmquist WF (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55:83–105. doi:10.1016/S0169-409X(02)00172-2

    Article  CAS  PubMed  Google Scholar 

  34. Zhou S-F (2008) Role of multidrug resistance associated proteins in drug development. Drug Discov Ther 2:305–332

    CAS  PubMed  Google Scholar 

  35. SYBYL, version 7.1, Tripos Associates. St. Louis, MO, USA (2006)

  36. Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254. doi:10.1007/BF01593790

    Article  Google Scholar 

  37. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  38. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, Burlington

    Google Scholar 

  39. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. doi:10.1023/A:1022627411411

    Google Scholar 

  40. Byvatov E, Fechner U, Sadowski J, Schneider G (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 43:1882–1889. doi:10.1021/ci0341161

    Article  CAS  PubMed  Google Scholar 

  41. Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5–14. doi:10.1016/S0097-8485(01)00094-8

    Article  CAS  PubMed  Google Scholar 

  42. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA 33:155–173

    CAS  PubMed  Google Scholar 

  43. Belekar VL, Lingineni K, Garg P (2015) Classification of breast cancer resistant protein (BCRP) inhibitors and non-inhibitors using machine learning approaches. Comb Chem High Throughput Screen 18:476–485. doi:10.2174/1386207318666150525094503

    Article  CAS  PubMed  Google Scholar 

  44. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. MIT Press, Cambridge, MA

    Google Scholar 

  45. Li J, Jaimes KF, Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23:34–46. doi:10.1002/pro.2387

    Article  PubMed  Google Scholar 

  46. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  47. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

  48. DeGorter MK, Gl Conseil, Deeley RG, Campbell RL, Cole SPC (2008) Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochem Biophys Res Commun 365:29–34. doi:10.1016/j.bbrc.2007.10.141

    Article  CAS  PubMed  Google Scholar 

  49. Bakos E, Evers R, Szakacs G, Tusnady GE, Welker E, Szaba K, de Haas M, van Deemter L, Borst P, Varadi A (1998) Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem 273:32167–32175. doi:10.1074/jbc.273.48.32167

    Article  CAS  PubMed  Google Scholar 

  50. Linton KJ (2007) Structure and function of ABC transporters. Physiology (Bethesda) 22:122–130. doi:10.1152/physiol.00046.2006

  51. Dawson RJP, Hollenstein K, Locher KP (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65:250–257. doi:10.1111/j.1365-2958.2007.05792.x

    Article  CAS  PubMed  Google Scholar 

  52. K-i Ito, Olsen SL, Qiu W, Deeley RG, Cole SPC (2001) Mutation of a single conserved tryptophan in multidrug resistance protein 1 (MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. J Biol Chem 276:15616–15624. doi:10.1074/jbc.M011246200

    Article  Google Scholar 

  53. Koike K, Oleschuk CJ, Haimeur A, Olsen SL, Deeley RG, Cole SPC (2002) Multiple membrane-associated tryptophan residues contribute to the transport activity and substrate specificity of the human multidrug resistance protein, MRP1. J Biol Chem 277:49495–49503. doi:10.1074/jbc.M206896200

    Article  CAS  PubMed  Google Scholar 

  54. Zhang DW, Cole SPC, Deeley RG (2001) Identification of an amino acid residue in multidrug resistance protein 1 critical for conferring resistance to anthracyclines. J Biol Chem 276:13231–13239. doi:10.1074/jbc.M010008200

    Article  CAS  PubMed  Google Scholar 

  55. Campbell JD, Koike K, Moreau C, Sansom MSP, Deeley RG, Cole SPC (2004) Molecular modeling correctly predicts the functional importance of Phe594 in transmembrane helix 11 of the multidrug resistance protein, MRP1 (ABCC1). J Biol Chem 279:463–468. doi:10.1074/jbc.M310711200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Vilas Belekar acknowledges Department of Electronics and Information Technology, GOI, New Delhi, India, for providing Senior Research Fellowship [Grant File No. DIT/R&D/Bio/15(3)/ 2011]. The authors acknowledge Prof. Inderpal Singh and Mr. Rameshwar Prajapati for their valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabha Garg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2553 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lingineni, K., Belekar, V., Tangadpalliwar, S.R. et al. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood–brain barrier (BBB) permeability. Mol Divers 21, 355–365 (2017). https://doi.org/10.1007/s11030-016-9715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9715-6

Keywords

Navigation