Skip to main content

Advertisement

Log in

A classification study of human β 3-adrenergic receptor agonists using BCUT descriptors

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Experimental EC50s for 202 human β 3-AR agonists are used to develop classification models as a potential screening tool for a large library of target compounds before synthesis. A variable selection approach from random forests (VS-RF) is used to extract the structural information most relevant to the human β 3-AR activation properties of the collected data set. The obtained results indicate that the VS-RF method can be used for variable selection with smallest sets of non-redundant descriptors with highly predictive accuracy (Q ex% = 96% for the external prediction set). Thus, the proposed VS-RF models should be helpful for screening of potential human β 3-AR agonists before chemical synthesis in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart W, Van Rooyen J, Cundiff G, Abrams P, Herzog A, Corey R, Hunt T, Wein A (2003) Prevalence and burden of overactive bladder in the United States. World J Urol 20: 327–336. doi:10.1007/s00345-002-0301-4

    PubMed  CAS  Google Scholar 

  2. Abrams P, Andersson K (2007) Muscarinic receptor antagonists for overactive bladder. BJU Int 100: 987–1006. doi:10.1111/j.1464-410X.2007.07205.x

    Article  PubMed  CAS  Google Scholar 

  3. Emorine L, Marullo S, Briend-Sutren M, Patey G, Tate K, Delavier-Klutchko C, Strosberg A (1989) Molecular characterization of the human β 3-adrenergic receptor. Science 245: 1118–1121. doi:10.1126/science.2570461

    Article  PubMed  CAS  Google Scholar 

  4. Yamaguchi O, Chapple C (2007) β 3-adrenoceptors in urinary bladder. Neurourol Urodyn 26: 752–756. doi:10.1002/nau.20420

    Article  PubMed  CAS  Google Scholar 

  5. Arch J, Ainsworth A, Cawthorne M, Piercy V, Sennitt M, Thody V, Wilson C, Wilson S (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309: 163–165. doi:10.1038/309163a0

    Article  PubMed  CAS  Google Scholar 

  6. Hu B, Jennings LL (2003) Orally bioavailable β 3-adrenergic receptor agonists as potential therapeutic agents for obesityand type-II diabetes. Prog Med Chem 41: 167–194. doi:10.1016/S0079-6468(02)41005-3

    Article  PubMed  CAS  Google Scholar 

  7. Uchida H, Shishido K, Nomiya M, Yamaguchi O (2005) Involvement of cyclic AMP-dependent and -independent mechanisms in the relaxation of rat detrusor muscle via β-adrenoceptors. Eur J Pharmacol 518: 195–202. doi:10.1016/j.ejphar.2005.06.029

    Article  PubMed  CAS  Google Scholar 

  8. de Souza C, Burkey B (2001) β 3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curr Pharm Des 7: 1433–1449. doi:10.2174/1381612013397339

    Article  PubMed  Google Scholar 

  9. Mathvink RJ, Tolman JS, Chitty D, Candelore MR, Cascieri MA, Colwell LF, Deng L, Feeney WP, Forrest MJ, Hom GJ, MacIntyre DE, Miller RR, Stearns RA, Tota L, Wyvratt MJ, Fisher MH, Weber AE (2000) Discovery of a potent, orally bioavailable β 3 adrenergic receptor agonist, (R)−N-[4-[2-2-hydroxy-2-(3-pyridinyl)ethyl] amino] ethyl] phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]benzenesulfonamide. J Med Chem 43: 3832–3836. doi:10.1021/jm000286i

    Article  PubMed  CAS  Google Scholar 

  10. Uehling DE, Shearer BG, Donaldson KH, Chao EY, Deaton DN, Adkison KK, Brown KK, Cariello NF, Faison WL, Lancaster ME, Lin J, Hart R, Milliken TO, Paulik MA, Sherman BW, Sugg EE, Cowan C (2006) Biarylaniline phenethanolamines as potent and selective β 3 adrenergic receptor agonists. J Med Chem 49: 2758–2771. doi:10.1021/jm0509445

    Article  PubMed  CAS  Google Scholar 

  11. Shearer BG, Chao EY, Uehling DE, Deaton DN, Cowan C, Sherman BW, Milliken T, Faison W, Brown K, Adkison KK, Lee F (2007) Synthesis and evaluation of potent and selective β 3 adrenergic receptor agonists containing heterobiaryl carboxylic acids. Bioorg Med Chem Lett 17: 4670–4677. doi:10.1016/j.bmcl.2007.05.069

    Article  PubMed  CAS  Google Scholar 

  12. Imanishi M, Tomishima Y, Itou S, Hamashima H, Nakajima Y, Washizuka K, Sakurai M, Matsui S, Imamura E, Ueshima K, Yamamoto T, Yamamoto N, Ishikawa H, Nakano K, Unami N, Hamada K, Matsumura Y, Takamura F, Hattori K (2008) Discovery of a novel series of biphenyl benzoic acid derivatives as potent and selective human β 3-adrenergic receptor agonists with good oral bioavailability. Part I. J Med Chem 51: 1925–1944. doi:10.1021/jm701324c

    Article  PubMed  CAS  Google Scholar 

  13. Imanishi M, Itou S, Washizuka K, Hamashima H, Nakajima Y, Araki T, Tomishima Y, Sakurai M, Matsui S, Imamura E, Ueshima K, Yamamoto T, Yamamoto N, Ishikawa H, Nakano K, Unami N, Hamada K, Matsumura Y, Takamura F, Hattori K (2008) Discovery of a novel series of biphenyl benzoic acid derivatives as highly potent and selective human β3 adrenergic receptor agonists with good Oral bioavailability. Part II. J Med Chem 51: 4002–4020. doi:10.1021/jm8000345

    Article  PubMed  CAS  Google Scholar 

  14. Imanishi M, Nakajima Y, Tomishima Y, Hamashima H, Washizuka K, Sakurai M, Matsui S, Imamura E, Ueshima K, Yamamoto T, Yamamoto N, Ishikawa H, Nakano K, Unami N, Hamada K, Matsumura Y, Takamura F, Hattori K (2008) Discovery of a novel series of benzoic acid derivatives as potent and selective human β 3 adrenergic receptor agonists with good oral bioavailability. 3. Phenylethanolaminotetraline (PEAT) skeleton containing biphenyl or biphenyl ether moiety. J Med Chem 51: 4804–4822. doi:10.1021/jm800222k

    Article  PubMed  CAS  Google Scholar 

  15. Nakajima Y, Imanishi M, Itou S, Hamashima H, Tomishima Y, Washizuka K, Sakurai M, Matsui S, Imamura E, Ueshima K, Yamamoto T, Yamamoto N, Ishikawa H, Nakano K, Unami N, Hamada K, Hattori K (2008) Discovery of novel series of benzoic acid derivatives containing biphenyl ether moiety as potent and selective human β 3-adrenergic receptor agonists. Part IV. Bioorg Med Chem Lett 18: 5037–5040. doi:10.1016/j.bmcl.2008.08.009

    Article  PubMed  CAS  Google Scholar 

  16. Hattori K, Toda S, Imanishi M, Itou S, Nakajima Y, Washizuka K, Araki T, Hamashima H, Tomishima Y, Sakurai M, Matsui S, Imamura E, Ueshima K, Yamamoto T, Yamamoto N, Ishikawa H, Nakano K, Unami N, Hamada K, Matsumura Y, Takamura F (2009) Discovery of highly potent and selective biphenylacylsulfonamide-based β 3-adrenergic receptor agonists and evaluation of physical properties as potential overactive bladder therapies. Part 5. J Med Chem 52: 3063–3072. doi:10.1021/jm9000709

    Article  PubMed  CAS  Google Scholar 

  17. Hattori K, Orita M, Toda S, Imanishi M, Itou S, Nakajima Y, Tanabe D, Washizuka K, Araki T, Sakurai M, Matsui S, Imamura E, Ueshima K, Yamamoto T, Yamamoto N, Ishikawa H, Nakano K, Unami N, Hamada K, Matsumura Y, Takamura F (2009) Discovery of highly potent and selective biphenylacylsulfonamide-based β 3-adrenergic receptor agonists and molecular modeling based on the solved X-ray structure of the β 2-adrenergic receptor. Part 6. Bioorg Med Chem Lett 19: 4679–4683. doi:10.1016/j.bmcl.2009.06.083

    Article  PubMed  CAS  Google Scholar 

  18. Sun X, Li Y, Liu X, Ding J, Wang Y, Shen H, Chang Y (2008) Classification of bioaccumulative and non-bioaccumulative chemicals using statistical learning approaches. Mol Divers 12: 157–169. doi:10.1007/s11030-008-9092-x

    Article  PubMed  CAS  Google Scholar 

  19. Wang Y, Li Y, Yang S, Yang L (2005) Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Model 45: 750–757. doi:10.1021/ci050041k

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Wang Y, Ding J, Wang Y, Chang Y, Zhang S (2009) In silico prediction of androgenic and nonandrogenic compounds using random forest. QSAR Comb Sci 28: 396–405. doi:10.1002/qsar.200810100

    Article  CAS  Google Scholar 

  21. Hao M, Li Y, Wang Y, Zhang S (2010) Prediction of PKCθ inhibitory activity using the random forest algorithm. Int J Mol Sci 11: 3413–3433. doi:10.3390/ijms11093413

    Article  PubMed  CAS  Google Scholar 

  22. Sun H (2005) A naive Bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing. J Med Chem 48: 4031–4039. doi:10.1021/jm050180t

    Article  PubMed  CAS  Google Scholar 

  23. Telvekar V, Patel D, Jadhav N, Mishra S (2010) Three-dimensional QSAR and pharmacophore mapping of biphenyl benzoic acid derivatives as selective human β 3-adrenergic receptor agonists. Med Chem Res 19: 1174–1190. doi:10.1007/s00044-009-9261-1

    Article  CAS  Google Scholar 

  24. Richard D, David E, Jeffrey D (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967. doi:10.1021/ja00226a005

    Article  Google Scholar 

  25. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37: 4130–4146. doi:10.1021/jm00050a010

    Article  PubMed  CAS  Google Scholar 

  26. DRAGON, rel. 5.2 for Windows (2004) Talete srl, Milano, Italy

  27. Kauffman GW, Jurs PC (2001) QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J Chem Inf Comput Sci 41: 1553–1560. doi:10.1021/Ci010073h

    PubMed  CAS  Google Scholar 

  28. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43: 1947–1958. doi:10.1021/ci034160g

    PubMed  CAS  Google Scholar 

  29. Gao H (2001) Application of BCUT metrics and genetic algorithm in binary QSAR analysis. J Chem Inf Comput Sci 41: 402–407. doi:10.1021/Ci000306p

    PubMed  CAS  Google Scholar 

  30. Roy K, Mitra I, Saha A (2009) Molecular shape analysis of antioxidant and squalene synthase inhibitory activities of aromatic tetrahydro-1,4-oxazine derivatives. Chem Biol Drug Des 74: 507–516. doi:10.1111/j.1747-0285.2009.00888.x

    Article  PubMed  CAS  Google Scholar 

  31. Díaz-Uriarte R, Alvarezde Andrés S (2006) Gene selection and classification of microarray data using random forest. BMC bioinformatics 7: 3. doi:10.1186/1471-2105-7-3

    Article  PubMed  Google Scholar 

  32. ISIS Draw 2.3, MDL Information Systems, Inc

  33. Hemmateenejad B, Yazdani M (2009) QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors. Anal Chim Acta 634: 27–35. doi:10.1016/j.aca.2008.11.062

    Article  PubMed  CAS  Google Scholar 

  34. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16: 357–369. doi:10.1023/A:1020869118689

    Article  PubMed  CAS  Google Scholar 

  35. Breiman L (2001) Random forests. Mach Learn 45: 5–32. doi:10.1023/A:1010933404324

    Article  Google Scholar 

  36. randomForest: Breiman and Cutler’s random forests for classification and regression. http://cran.r-project.org/web/packages/randomForest/index.html. Accessed on 27 May 2011

  37. varSelRF: Variable selection using random forests. http://cran.r-project.org/web/packages/varSelRF/index.html. Accessed on 27 May 2011

  38. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46: 389–422. doi:10.1023/A:1012487302797

    Article  Google Scholar 

  39. kernlab: Kernel-based machine learning lab. http://cran.r-project.org/web/packages/kernlab/index.html. Accessed on 27 May 2011

  40. MASS: Main package of venables and Ripley’s MASS. http://cran.r-project.org/web/packages/MASS/index.html. Accessed on 27 May 2011

  41. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405: 442–451. doi:10.1016/0005-2795(75)90109-9

    PubMed  CAS  Google Scholar 

  42. Ren Y, Liu H, Yao X, Liu M (2007) Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Anal Chim Acta 589: 150–158. doi:10.1016/j.aca.2007.02.058

    Article  PubMed  CAS  Google Scholar 

  43. Eriksson L, Jaworska J, Worth A, Cronin M, McDowell R, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111: 1361–1375. doi:10.1289/ehp.5758

    Article  PubMed  CAS  Google Scholar 

  44. caret: Classification and regression training. http://cran.r-project.org/web/packages/caret/index.html. Accessed on 27 May 2011

  45. Ren Y, Liu H, Xue C, Yao X, Liu M, Fan B (2006) Classification study of skin sensitizers based on support vector machine and linear discriminant analysis. Anal Chim Acta 572: 272–282. doi:10.1016/j.aca.2006.05.027

    Article  PubMed  CAS  Google Scholar 

  46. Burden F (1997) A chemically intuitive molecular index based on the eigenvalues of a modified adjacency matrix. Quant Struct Act Relatsh 16: 309–314. doi:10.1002/qsar.19970160406

    Article  CAS  Google Scholar 

  47. Mercader A, Duchowicz P, Fernández F, Castro E, Bennardi D, Autino J, Romanelli G (2008) QSAR prediction of inhibition of aldose reductase for flavonoids. Bioorg Med Chem 16: 7470–7476. doi:10.1016/j.bmc.2008.06.004

    Article  PubMed  CAS  Google Scholar 

  48. Stanton DT (1999) Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J Chem Inf Comput Sci 39: 11–20. doi:10.1021/ci980102x

    CAS  Google Scholar 

  49. Pirard B, Pickett S (2000) Classification of kinase inhibitors using BCUT descriptors. J Chem Inf Comput Sci 40: 1431–1440. doi:10.1021/ci000386x

    PubMed  CAS  Google Scholar 

  50. Ford M, Pitt W, Whitley D (2004) Selecting compounds for focused screening using linear discriminant analysis and artificial neural networks. J Mol Graph Model 22: 467–472. doi:10.1016/j.jmgm.2004.03.006

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 7108 kb)

ESM 2 (PDF 6776 kb)

ESM 3 (PDF 6781 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, M., Li, Y., Wang, Y. et al. A classification study of human β 3-adrenergic receptor agonists using BCUT descriptors. Mol Divers 15, 877–887 (2011). https://doi.org/10.1007/s11030-011-9321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9321-6

Keywords

Navigation