Skip to main content
Log in

New one-pot synthesis of spiro[furo[2,3-d]pyrimidine-6,5′-pyrimidine]pentaones and their sulfur analogues

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Reaction of barbituric acid (BA), 1,3-dimethyl barbituric acid (DMBA) and 2-thiobarbituric acid (TBA) with cyanogen bromide and various aldehydes in presence of triethylamine afforded a new class of heterocyclic stable 5-alkyl and/or 5-aryl-1H, 1′H-spiro[furo[2,3-d]pyrimidine-6,5′-pyrimidine]2,2′,4,4′,6′(3H,3′H,5H)-pentaones which are dimeric forms of barbiturate (uracil and thiouracil derivatives) at 0 °C to ambient temperatures. Structure elucidation is proved by X-ray crystallography, 1H NMR, 13C NMR, FT-IR, CHN and mass analyses techniques. Mechanisms of the formations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campaigne E, Ellis RL, Bradford M, Ho J (1969) Synthesis of some ureidodihydrofurans and related pyrimidones as potential antimalarials. J Med Chem 12: 339–342. doi:10.1021/jm00302a041

    Article  PubMed  CAS  Google Scholar 

  2. Kotha S, Deb AC, Kumar RV (2005) Spiro-annulation of barbituric acid derivatives and its analogs by ring-closing metathesis reaction. Bioorg Med Chem Lett 15: 1039–1043. doi:10.1016/j.bmcl.2004.12.034

    Article  PubMed  CAS  Google Scholar 

  3. Katritzky, AR, Rees, CW (eds) (1997) Comprehensive heterocyclic chemistry, vol. 7. Pergamon Press, Oxford

    Google Scholar 

  4. Naya SI, Miyama H, Yasu K, Takayasu T, Nitta M (2003) Novel synthesis and properties of 7,9-dimethylcyclohepta[b]pyrimido[5, 4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate: autorecycling oxidation of some alcohols under photo-irradiation. Tetrahedron 59: 1811–1821. doi:10.1016/S0040-4020(03)00118-2

    Article  CAS  Google Scholar 

  5. Capella-Peiró M-E, Carda-Broch S, Monferrer-Pons L, Esteve-Romero J (2004) Micellar liquid chromatographic determination of nicotinic acid and nicotinamide after precolumn König reaction derivatization. Anal Chim Acta 517: 81–87. doi:10.1016/j.aca.2004.05.014

    Article  Google Scholar 

  6. Pelletier O, Campbell JA (1962) Determination of nikethamide with cyanogen bromide and barbituric acid. J Pharm Sci 51: 594–595. doi:10.1002/jps.2600510624

    Article  PubMed  CAS  Google Scholar 

  7. Pelletier O, Campbell JA (1961) Direct determination of niacinamide in multivitamin preparations. J Pharm Sci 50: 926–928. doi:10.1002/jps.2600501109

    Article  PubMed  CAS  Google Scholar 

  8. Jursic BS, Stevens ED (2003) Mono C-alkylation and mono C-benzylation of barbituric acids through zinc/acid reduction of acyl, benzylidene, and alkylidene barbiturate intermediates. Tetrahedron Lett 44: 2203–2210. doi:10.1016/S0040-4039(03)00111-4

    Article  CAS  Google Scholar 

  9. Moskvin AV, Reznikova NR, Ivin BA (2002) Condensation of hydroxypyrimidines with carbonyl compounds: I. Barbituric acids. Russ J Org Chem 38: 463–474

    Article  CAS  Google Scholar 

  10. Tanaka K, Cheng X, Kimura T, Yoneda F (1986) Mild oxidation of allylic and benzylic alcohols with 5-arylidene barbituric acid derivatives as a model of redox coenzymes. Chem Pharm Bull 34: 3945–3948

    CAS  Google Scholar 

  11. Tanaka K, Chen X, Kimura T, Yoneda F (1988) 5-Arylidene-1,3-dimethylbarbituric acid derivatives, mild organic oxidants for allylic and benzylic alcohols. Chem Pharm Bull 36: 60–69

    CAS  Google Scholar 

  12. Jursic BS, Douelle F, Stevens ED (2003) Preparation of 5-diaminomethylenebarbiturates by barbituric acid addition to carbodiimides. Tetrahedron 59: 3427–3432. doi:10.1016/S0040-4020(03)00489-7

    Article  CAS  Google Scholar 

  13. Spange S, Bauer M, Walfort B, Lang H (2006) Barbituric acid as a substituent at aryl methylium ions. J Org Chem 71: 7850–7853. doi:10.1021/jo061196+

    Article  PubMed  CAS  Google Scholar 

  14. Jursic BS, Neumann DM, Martin KL, Stevens ED (2002) Barbituric acid initiated rearrangement of 2,2′-pyridil into 5,5′-(2-pyrilidine)bisbarbituric acid. Org Lett 4: 811–813. doi:10.1021/ol017305i

    Article  PubMed  CAS  Google Scholar 

  15. Jursic BS, Neumann DM, Moore Z, Stevens ED (2002) Unique charge-separated pyridinium-barbituric acid zwitterions. J Org Chem 67: 2372–2374. doi:10.1021/jo0161431

    Article  PubMed  CAS  Google Scholar 

  16. McClenaghan ND, Absalon C, Bassani DM (2003) Facile synthesis of a fullerene-barbituric acid derivative and supramolecular catalysis of its photoinduced dimerization. J Am Chem Soc 125: 13004–13005. doi:10.1021/ja0372098

    Article  PubMed  CAS  Google Scholar 

  17. Renard A, Lhomme J, Kotera M (2002) Synthesis and properties of spiro nucleosides containing the barbituric acid moiety. J Org Chem 67: 1302–1307. doi:10.1021/jo016194y

    Article  PubMed  CAS  Google Scholar 

  18. Paramonov IV, Belyaev NA, Glukhareva TV, Volkov AS, Deeva EV (2006) One-step synthesis of a novel heterocyclic system: spiro[[1,4]thiazino-[4,3-a]quinoline-5,5′-pyrimidine]. Chem Heterocycl Compd 42: 127–128

    Article  CAS  Google Scholar 

  19. Naya S-I, Yoda K, Nitta M (2005) Synthesis and properties of 5-[bis(1-heteroazulen-3-yl) methylidene]pyrimidine-2,4,6(1H,3H, 5H)-triones. Tetrahedron 61: 8616–8624. doi:10.1016/j.tet.2005.07.001

    Article  CAS  Google Scholar 

  20. Kumar V (2005) Cyanogen bromide. Synlett 10: 1638

    Article  Google Scholar 

  21. Martin D, Bauer M (1990) Cyanic acid esters from phenols: phenyl cyanate. Org Synth Coll 7: 435

    CAS  Google Scholar 

  22. Gross E, Witkop B (1961) Selective cleavage of the methionyl peptide bonds in ribonuclease with cyanogen bromide. J Am Chem Soc 83: 1510–1511. doi:10.1021/ja01467a052

    Article  CAS  Google Scholar 

  23. McCallum PBW, Grimmett MR, Blackman AG, Weavers RT (1999) Reaction of imidazoles with cyanogen bromide: cyanation at N1 or bromination at C2?. Aust J Chem 52: 159–166. doi:10.1071/C98105

    Article  CAS  Google Scholar 

  24. Tanner DD, Lycan G, Bunce NJ (1970) Free-radical reaction of cyanogen bromide with alkanes. Can J Chem 48: 1492–1497. doi:10.1139/v70-244

    Article  CAS  Google Scholar 

  25. Alberola A, Andres C, Ortega AG, Pedrosa R, Vicente M (1986) Cyanogen bromide as a useful brominating agent, synthesis of α-bromo-β-aminoenones. Synth Commun 16: 1161–1165. doi:10.1080/00397918608056361

    Article  CAS  Google Scholar 

  26. Brown DJ, Mason SF (1962) Chemistry of heterocyclic compounds: the pyrimidines, vol 16. Wiley, New York

    Book  Google Scholar 

  27. Schriner RL, Fusan RC, Curtin DY, Morrill TC (1980) The systematic identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  28. Huang C-H, McClenaghan ND, Kuhn A, Bravic G, Bassani DM (2006) Hierarchical self-assembly of all organic photovoltaic devices. Tetrahedron 62: 2050–2059. doi:10.1016/j.tet.2005.09.150

    Article  CAS  Google Scholar 

  29. Figueroa-Villar JD, Cruz ER (1993) A simple approach towards the synthesis of oxadeazaflavines. Tetrahedron 49: 2855–2862. doi:10.1016/S0040-4020(01)80384-7

    Article  CAS  Google Scholar 

  30. Zoorob HH, Abou-El Zahab MM, Abdel-Mogib M, Ismail MA (1996) Peculiar reaction behaviour of barbituric acid derivatives towards aromatic amines. Tetrahedron 52: 10147–10158. doi:10.1016/0040-4020(96)00537-6

    Article  CAS  Google Scholar 

  31. Adamson J, Coe BJ, Grassam HL, Jeffery JC, Coles SJ, Hursthouse MB (1999) Reactions of 1,3-diethyl-2-thiobarbituric acids: Formation of arylbis(1,3-diethyl-2-thiobarbitur-5-yl)methanes and crystallographic evidence for ground state polarisation in 1,3-dimethyl-5,4-(dimethylamino)benzylidene-2-thiobarbituric acid. J Chem Soc Perkin Trans 1: 2483–2488. doi:10.1039/a904015c

    Article  Google Scholar 

  32. Noroozi Pesyan N (2009) Tautomeric behaviour and isotopic multiplets in the 13C NMR spectra of partially deuterated 5-arylazo-pyrimidine(1H,3H,5H)-2,4,6-triones and 5-arylazo-2-thioxo-pyrimidine(1H,3H,5H)-4,6-diones—evidence for elucidation of tautomeric forms. Magn Reson Chem 33: 953–958. doi:10.1002/mrc.2498

    Article  Google Scholar 

  33. Rimaz M, Noroozi Pesyan N, Khalafy J (2010) Tautomerism and isotopic multiplets in the 13C NMR spectra of partially deuterated 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and their sulfur analogs—evidence for elucidation of the structure backbone and tautomeric forms. Magn Reson Chem 48: 276–285. doi:10.1002/mrc.2573

    Article  PubMed  CAS  Google Scholar 

  34. Sheldrick GM (1997) SHELXL97. University of Göttingen, Göttingen, Germany

    Google Scholar 

  35. Vogel A (1978) Textbook of practical organic chemistry, (VOGEL’S), 4th edn. Longman, New York

    Google Scholar 

  36. Hartman WW, Dreger EE (1943) Cyanogen bromide. Org Synth Coll 2: 150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Noroozi Pesyan.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 3,973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalilzadeh, M., Noroozi Pesyan, N., Rezaee, F. et al. New one-pot synthesis of spiro[furo[2,3-d]pyrimidine-6,5′-pyrimidine]pentaones and their sulfur analogues. Mol Divers 15, 721–731 (2011). https://doi.org/10.1007/s11030-011-9302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9302-9

Keywords

Navigation