Skip to main content

Advertisement

Log in

Pharmacophore mapping of flavone derivatives for aromatase inhibition

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Aromatase, which catalyses the final step in the steroidogenesis pathway of estrogen, has been target for the design of inhibitor in the treatment of hormone dependent breast cancer for postmenopausal women. The extensive SAR studies performed in the last 30 years to search for potent, selective and less toxic compounds, have led to the development of second and third generation of non-steroidal aromatase inhibitors (AI). Besides the development of synthetic compounds, several naturally occurring and synthetic flavonoids, which are ubiquitous natural phenolic compounds and mediate the host of biological activities, are found to demonstrate inhibitory effects on aromatase. The present study explores the pharmacophores, i.e., the structural requirements of flavones (Fig. 1) for inhibition of aromatase activity, using quantitative structure activity relationship (QSAR) and space modeling approaches. The classical QSAR studies generate the model (R 2 = 0.924, Q 2 = 0.895, s = 0.233) that shows the importance of aromatic rings A and C, along with substitutional requirements in meta and para positions of ring C for the activity. 3D QSAR of Comparative Molecular Field Analysis (CoMFA, R 2 = 0.996, \({R^{2}_{cv}=0.791}\)) and Comparative Molecular Similarity Analysis (CoMSIA, R 2 = 0.992, \({R^{2}_{cv}=0.806}\)) studies show contour maps of steric and hydrophobic properties and contribution of acceptor and donor of the molecule, suggesting the presence of steric hindrance due to ring C and R′′-substituent, bulky hydrophobic substitution in ring A, along with acceptors at positions 11, and α and γ of imidazole ring, and donor in ring C favor the inhibitory activity. Further space modeling (CATALYST®) study (R = 0.941, Δ cost  = 96.96, rmsd = 0.876) adjudge the presence of hydrogen bond acceptor (keto functional group), hydrophobic (ring A) and aromatic rings (steric hindrance) along with critical distance among features are important for the inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartmann RW, Ehmer PB, Haidar S et al (2002) Inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Arch Pharm 335: 19–128

    Article  Google Scholar 

  2. Fobes JF (1997) The control of breast cancer: the role of tamoxifene. Semin Oncol 24: S115–S119

    Google Scholar 

  3. Brueggemeier RW (2002) Aromatase inhibitors in breast cancer therapy. Anticancer Ther 2: 181–191

    Article  CAS  Google Scholar 

  4. Brueggemeier RW, Richards JA, Joomprabutra S et al (2001) Molecular pharmacology of aromatase and its regulation by endogenous and exogenous agents. J Steroid Biochem Mol Biol 79: 75–84

    Article  PubMed  CAS  Google Scholar 

  5. Banting L, Nicholls PJ, Shaw MA, Smith HJ (1989) Recent developments in aromatase inhibition as a potential treatment for oestrogen-dependent breast cancer. Prog Med Chem 26: 253–298

    Article  PubMed  CAS  Google Scholar 

  6. Pasqualini JR (2004) The selective estrogen enzyme modulators in breast cancer: A review. Biochem Biophys Acta 21: 23–43

    Google Scholar 

  7. Miller WR (2003) Aromatase Inhibitor: mechanism of action and role in the treatment of breast cancer. Semin Oncol 30: 3–11

    Article  PubMed  CAS  Google Scholar 

  8. Howell A (2005) New developments in the treatment of postmenopausal breast cancer. Trends Endocrin Metab 9: 420–428

    Article  CAS  Google Scholar 

  9. Carlo DG, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 49: 337–353

    Article  Google Scholar 

  10. Kao YC, Zhou C, Sherman M et al (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. Environ Health Perspect 106: 85–92

    Article  PubMed  CAS  Google Scholar 

  11. Jeong HJ, Shin YG, Kim IH, Pezzuto JM (1999) Inhibition of aromatase activity by flavonoids. Arch Pharm Res 22: 309–312

    PubMed  CAS  Google Scholar 

  12. Jordan VC, Mittal S, Gosden B et al (1985) Structure–activity relationships of estrogens. Environ Health Perspect 61: 97–110

    Article  PubMed  CAS  Google Scholar 

  13. Le Bail JC, Laroche T, Marre-Fournier F, Habrioux G (1998) Aromatase and 17β-hydroxysteroid dehydrogenase inhibition by flavonoids. Cancer Let 133: 101–106

    Article  CAS  Google Scholar 

  14. Pouget C, Lauthier F, Alain Simon A et al (2001) Flavonoids: structural requirements for antiproliferative activity on breast cancer cells. Bioorg Med Chem Let 11: 3095–3097

    Article  CAS  Google Scholar 

  15. Fallowfield L, Cella D, Cuzick J et al (2004) Quality of life of postmenopausal women in the arimidex, tamoxifen, alone or in combination (ATAC) adjuvant breast cancer trial. J Clin Oncol 21: 4261–4271

    Article  CAS  Google Scholar 

  16. Montana JG, Dyke HJ (2002) Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Invest Drugs 11: 1–13

    Article  Google Scholar 

  17. Hertog MGL, Feskens EJM, Kromhout D et al (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007–1011

    Article  PubMed  CAS  Google Scholar 

  18. Kristam R, Gillet VJ, Lewis RA, Thorner D (2005) Comparison of conformational analysis techniques to generate pharmacophore hypotheses using catalyst. J Chem Inf Model 2: 461–476

    Article  CAS  Google Scholar 

  19. Guner OF (2000) In pharmacophore perception, development, and use in drug design. International University Line, California

    Google Scholar 

  20. Gobbi S, Cavalli A, Rampa A et al (2006) Lead optimization providing a series of flavone derivatives as potent nonsteroidal inhibitors of the cytochrome P450 aromatase enzyme. J Med Chem 49: 4777–4780

    Article  PubMed  CAS  Google Scholar 

  21. Pouget C, Fagnere C, Basly JP et al (2002) Synthesis and aromatase inhibitory activity of flavanones. Pharma Res 19: 286–291

    Article  CAS  Google Scholar 

  22. Snedecor GW, Cochran WG (1967) Statistical methods, 6th edn. Iowa State University Press, Iowa

    Google Scholar 

  23. Wold S, Albano C (1984) Multivariate data analysis in chemistry. In: Kowalski B (ed) CHEMOMETRICS: mathematics and statistics in chemistry, Reidel Dordrecht Netherlands

  24. Hoskuldsson A (1987) PLS regression methods. J Chemometrics 2: 211–228

    Article  Google Scholar 

  25. CS Chem3D Pro and CS MOPAC Pro 5.0, CambridgeSoft, Cambridge. www.camsoft.com

  26. Kier LB, Hall LH (1990) An electrotopological-state index for atoms in molecules. Pharm Res 7: 801–807

    Article  PubMed  CAS  Google Scholar 

  27. ESI-MS (2007) Chemical Technology, Calcutta University, Kolkata. www.caluniv.ac.in

  28. CAChe 6.1, Computer-aided chemistry for macintosh and windows, Fujitsu Systems Business of America Inc. Chiba, Japan. www.CACheSoftware.com

  29. TSAR 3D 3.3, Oxford Molecular Limited, Accelrys, San Diego. www.accelrys.com

  30. Statistica 5.0, StatSoft Inc, Tulsa. www.statsoft.com

  31. Wold S, Eriksson L (1995) Chemometric methods in molecular design. In: de Waterbeemd HV (eds) Chemometric methods, vol 2. Weinheim, VCH Verlagsgesellschaft mbh, p 312

    Google Scholar 

  32. Cramer RD III, Patterson DE, Bunce JD (1989) Recent advances in comparative molecular field analysis (CoMFA). Prog Clin Biol Res 291: 161–165

    PubMed  CAS  Google Scholar 

  33. Allen MS, Tan YC, Koehler KF et al (1990) Synthetic and computer-assisted analyses of the pharmacophore for the benzodiazepine receptor inverse agonist site. J Med Chem 33: 2343–2357

    Article  PubMed  CAS  Google Scholar 

  34. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37: 4130–4146

    Article  PubMed  CAS  Google Scholar 

  35. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967

    Article  CAS  Google Scholar 

  36. Cramer RD III, Bunce JD, Patterson DE et al (1988) Cross-validation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR and QSPR studies. Quant Struct Act Relat 7: 18–25

    Article  Google Scholar 

  37. Wehrens R, van der Linden WE (1997) Bootstrapping principal component regression models. J Chemom 11: 157–171

    Article  CAS  Google Scholar 

  38. SYBYL 7.3, (2006) Tripos Inc, St. Louis. www.tripos.com

  39. Kirkpatrick S, Gelatt CD, Vecchi MP Jr (1983) Optimization by simulated annealing. Science 220: 671–680

    Article  PubMed  Google Scholar 

  40. Streitwieser A (1961) Molecular orbital theory for organic chemists. Wiley, New York

    Google Scholar 

  41. Vinter JG, Davis A, Saunders MR (1987) Strategic approaches to drug design. I. An integrated software framework for molecular modeling. J Comp-Aided Mol Design 1: 31–51

    Article  CAS  Google Scholar 

  42. White DNJ (1977) The principles and practice of molecular mechanics calculations. Comp Chem 1: 225–233

    Article  CAS  Google Scholar 

  43. Catalyst 4.11 (2005) Accelrys Inc, San Diego, CA. www.accelrys.com

  44. Schuster D, Laggner C, Steindl TM (2006) Pharmacophore modeling and in-silico screening for new P450 19 (aromatase) inhibitors. J Chem Inf Model 46: 1301–1311

    Article  PubMed  CAS  Google Scholar 

  45. Cavalli A, Bisi A, Bertucci C et al (2005) Enantioselective nonsteroidal aromatase inhibitors identified through a multidisciplinary medicinal chemistry approach. J Med Chem 48: 7282–7289

    Article  PubMed  CAS  Google Scholar 

  46. Recanatini M, Bisi A, Cavalli A et al (2001) A new class of nonsteroidal aromatase inhibitors: Design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17-hydroxylase/C17,20-lyase. J Med Chem 44: 672–680

    Article  PubMed  CAS  Google Scholar 

  47. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure–activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29: 163–172

    CAS  Google Scholar 

  48. Favia AD, Cavalli A, Masetti M et al (2006) Three dimensional model of the human aromatase enzyme and density functional parameterization of the iron-containing protopophyrin IX for molecular dynamics study of heme-cysteinato cytochromes. Proteins 62: 1074–1087

    Article  PubMed  CAS  Google Scholar 

  49. Gauthier S, Caron B, Cloutier J et al (1997) (S)-(+)-4-[7-(2,2-Dimethyl-1-oxopropoxy)-4-methyl-2-[4-[2-(1-piperidinyl)- ethoxy]phenyl]-2H-1-benzopyran-3-yl]-phenyl-2,2-dimethylpropanoate (EM-800): a highly potent, specific, and orally active nonsteroidal antiestrogen. J Med Chem 40: 2117–2122

    Article  PubMed  CAS  Google Scholar 

  50. Miller CP, Collini MD, Tran BD et al (2001) Design, synthesis, and preclinical characterization of novel, highly selective indole estrogens. J Med Chem 44: 1654–1657

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achintya Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagar, S., Islam, M.A., Das, S. et al. Pharmacophore mapping of flavone derivatives for aromatase inhibition. Mol Divers 12, 65–76 (2008). https://doi.org/10.1007/s11030-008-9077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-008-9077-9

Keywords

Navigation