Skip to main content
Log in

On the existence and uniqueness in phase-lag thermoelasticity

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper is devoted to analyze the phase-lag thermoelasticity problem. We study two different cases and we prove, for each one of them, that the solutions of the problem are determined by a quasi-contractive semigroup. As a consequence, existence, uniqueness and continuous dependence of the solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and from now on, \(g^{(k)}\) denotes the k-th derivative of the function g with respect to the time and, in particular, \(g^{(0)}=g.\)

References

  1. Adams RA (1975) Sobolev spaces. Academic Press, New York

    MATH  Google Scholar 

  2. Amendola G, Fabrizio M, Golden M, Lazzari B (2016) Second-order approximation for heat conduction: dissipation principle and free energies. Proc R Soc A 472:1–17

    Article  MathSciNet  MATH  Google Scholar 

  3. Borgmeyer K, Quintanilla R, Racke R (2014) Phase-lag heat conduction: decay rates for limit problems and well-posedness. J Evol Equ 14:863–884

    Article  MathSciNet  MATH  Google Scholar 

  4. Borgmeyer K (2016) Dual- und Three-Phase-lag-Modelle: Zeitliche Asymptotik von Lsungen. Dissertation (Ph.D. Thesis), University of Konstanz

  5. Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–729

    Article  ADS  Google Scholar 

  6. Choudhuri SKR (2007) On a thermoelastic three-phase-lag model. J Therm Stress 30:231–238

    Article  Google Scholar 

  7. Dreher M, Quintanilla R, Racke R (2009) Ill-posed problems in thermomechanics. Appl Math Lett 22:1374–1379

    Article  MathSciNet  MATH  Google Scholar 

  8. Fabrizio M, Lazzari B (2014) Stability and second law of thermodynamics in dual-phase-lag heat conduction. Int J Heat Mass Transf 74:484–489

    Article  Google Scholar 

  9. Fabrizio M, Lazzari B, Tibullo V (2017) Stability and thermodynamic restrictions for a dual-phase-lag thermal model. J Non-Equilib Thermodyn 42(3):243–252

    Article  ADS  Google Scholar 

  10. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stress 15:253–264

    Article  ADS  MathSciNet  Google Scholar 

  11. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elasticity 31:189–208

    Article  MathSciNet  MATH  Google Scholar 

  12. Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stress 22:451–470

    Article  MathSciNet  MATH  Google Scholar 

  13. Hetnarski RB, Ignaczak J (2000) Nonclassical dynamical thermoelasticity. Int J Solids Struct 37:215–224

    Article  MathSciNet  MATH  Google Scholar 

  14. Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford Mathematical Monographs, Oxford

    MATH  Google Scholar 

  15. Kothari S, Mukhopadhyay S (2013) Some theorems in linear thermoelasticity with dual phase-lags for an anisotropic medium. J Therm Stress 36:985–1000

    Article  Google Scholar 

  16. Liu Z, Quintanilla R, Wang Y (2017) On the phase-lag heat equation with spatial dependent lags. J Math Anal Appl 455:422–438

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu Z, Quintanilla R Time decay in dual-phase-lag thermoelasticity: critical case. Commun Pure Appl Anal (in press)

  18. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  19. Miranville A, Quintanilla R (2011) A phase-field model based on a three-phase-lag heat conduction. Appl Math Optim 63:133–150

    Article  MathSciNet  MATH  Google Scholar 

  20. Mukhopadhyay S, Kothari S, Kumar R (2010) On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags. Acta Mech 214:305–314

    Article  MATH  Google Scholar 

  21. Prasad R, Kumar R, Mukhopadhyay S (2010) Propagation of harmonic waves under thermoelasticity with dual-phase-lags. Int J Eng Sci 48:2028–2043

    Article  MathSciNet  MATH  Google Scholar 

  22. Quintanilla R (2002) Exponential stability in the dual-phase-lag heat conduction theory. J Non-Equilib Thermodyn 27:217–227

    Article  ADS  MATH  Google Scholar 

  23. Quintanilla R (2008) A well-posed problem for the dual-phase-lag heat conduction. J Therm Stress 31:260–269

    Article  Google Scholar 

  24. Quintanilla R (2009) A well-posed problem for the three-dual-phase-lag heat conduction. J Therm Stress 32:1270–1278

    Article  Google Scholar 

  25. Quintanilla R, Racke R (2006) Qualitative aspects in dual-phase-lag thermoelasticity. SIAM J Appl Math 66:977–1001

    Article  MathSciNet  MATH  Google Scholar 

  26. Quintanilla R, Racke R (2006) A note on stability of dual-phase-lag heat conduction. Int J Heat Mass Transf 49:1209–1213

    Article  MATH  Google Scholar 

  27. Quintanilla R, Racke R (2007) Qualitative aspects in dual-phase-lag heat conduction. Proc R Soc Lond A 463:659–674

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Quintanilla R, Racke R (2008) A note on stability in three-phase-lag heat conduction. Int J Heat Mass Transf 51:24–29

    Article  MATH  Google Scholar 

  29. Quintanilla R, Racke R (2015) Spatial behavior in phase-lag heat conduction. Diff Integral Equ 28:291–308

    MathSciNet  MATH  Google Scholar 

  30. Serdyukov SI, Voskresenskii NM, Bel’nov VK, Karpov II (2003) Extended irreversible thermodynamics and generalization of the dual-phase-lag model in heat transfer. J Non-Equilib Thermodyn 28:1–13

    Article  Google Scholar 

  31. Singh B (2013) Wave propagation in dual-phase-lag anisotropic thermoelasticity. Contin Mech Thermodyn 25:675–683

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Straughan B (2011) Heat waves, Appl. Math. Sci., vol 177. Springer, Berlin

    Book  Google Scholar 

  33. Tzou DY (1995) A unified approach for heat conduction from macro to micro-scales. ASME J Heat Transf 117:8–16

    Article  Google Scholar 

  34. Wang L, Zhou X, Wei X (2008) Heat conduction. Mathematical models and analytical solutions. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgements

Investigations reported in this paper were supported by projects “Análisis Matemático de las Ecuaciones en Derivadas Parciales de la Termomecánica” (MTM2013-42004-P, AEI/FEDER, UE) and “Análisis Matemático de Problemas de la Termomecánica” (MTM2016-74934-P, AEI/FEDER, UE) of the Spanish Ministry of Economy and Competitiveness. The authors want to thank an anonymous referee for his useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Magaña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaña, A., Quintanilla, R. On the existence and uniqueness in phase-lag thermoelasticity. Meccanica 53, 125–134 (2018). https://doi.org/10.1007/s11012-017-0727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0727-9

Keywords

Navigation