Skip to main content
Log in

Kinematics and dynamics of planar mechanisms reinterpreted in rigid-body’s configuration space

  • Parallel Manipulators
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Mechanisms with lower mobility can be studied by using tools that are directly deduced from those of spatial kinematics as screw theory. Nevertheless, ad-hoc tools that fully exploit the peculiarities of the displacement subgroups these mechanisms move in are usually more efficient both in showing mechanisms’ features and when used to conceive numerical algorithms. Planar displacements constitute a three-dimensional subgroup with many peculiarities that allow the use of simplified tools (e.g., complex numbers) for studying planar mechanisms. Here, the systematic use of three-dimensional vector spaces to represent link poses and velocities in planar motion and planar system of forces is investigated. The result is a novel coherent set of tools that make it possible to geometrically describe kinematics and dynamics of planar mechanisms in the three-dimensional configuration space of links’ planar poses. The effectiveness of this novel approach is shown through a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Here, the non-homogeneity is not a problem since these components will be always separately summed.

  2. If σ A|1 = cos θ1 i + sin θ1 j + ζPA|1 k, σ A|2 = cos θ2 i + sin θ2 j + ζPA|2 k and σ A|3 = cos θ3 i + sin θ3 j + ζPA|3 k, then σ A|1 · σ A|2 × σ A|3 = ζPA|1sin(θ3 − θ2) + ζPA|2sin(θ1 − θ3) + ζPA|3sin(θ2 − θ1).

  3. The addition and subtraction of slope angles, θrs, must be computed by choosing the values congruent modulo 2π that belong to the range ]−π, π] rad.

  4. If σ A|1 = cos θ1 i + sin θ1 j + ζPA|1 k and σ A|2 = cos θ2 i + sin θ2 j + ζPA|2 k, then σ A|1 × σ A|2 = ζPA|1(cos θ2 j − sin θ2 i) − ζPA|2(cos θ1 j − sin θ1 i) + sin(θ2 − θ1)  k.

  5. Here, “passive” means without actuators. Moreover, all the kinematic pairs are supposed “ideal constraints” (i.e., without friction).

  6. R and P denote revolute and prismatic pair, respectively.

  7. Hereafter, an underlined R denotes an actuated R pair.

  8. A PPM with 2RRR-RR architecture has been proposed by Pennock and Israr [13] as an adjustable six-bar linkage.

References

  1. Paul B (1979) Kinematics and dynamics of planar machinery. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  2. Mason M (2001) Mechanics of robotic manipulation. MIT Press, Cambridge

    Google Scholar 

  3. Lounesto P (2004) Introduction to Clifford algebras. In: Ablamowicz R et al (eds) Lectures on Clifford (geometric) algebras and applications. Springer, New York, pp 1–30

    Chapter  Google Scholar 

  4. Hervé JM (1994) The mathematical group structure of the set of displacements. Mech Mach Theory 29(1):73–81

    Article  Google Scholar 

  5. Bonev IA, Zlatanov D, Gosselin CM (2003) Singularity analysis of 3-dof planar parallel mechanisms via screw theory. ASME J Mech Des 125(3):573–581

    Article  Google Scholar 

  6. Reuleaux F (1876) The kinematics of machinery. MacMillan, London

    Google Scholar 

  7. Lin Q, Burdick J (2000) Objective and frame-invariant kinematic metric functions for rigid bodies. Int J Robot Res 19(6):612–625

    Article  Google Scholar 

  8. Di Gregorio R (2008) A novel point of view to define the distance between two rigid-body poses. In: Lenarcic J, Wenger P (eds) Advances in robot kinematics: analysis and design, ARK2008. Springer, Amsterdam, pp 361–369. ISBN: 978-1-4020-8599-4

  9. Di Gregorio R (2009) Review and comparison of the metrics proposed for measuring the distance between two rigid-body poses. In: Meneghetti U, Maggiore A, Parenti-Castelli V (eds) Seconda Giornata di Studio Ettore Funaioli: 18 luglio 2008. Quaderni del DIEM, Bologna, pp 221–233. ISBN: 978-88-86909-53-2. doi:10.6092/unibo/amsacta/2552

  10. Tenenbaum RA (2004) Fundamentals of applied dynamics. Springer, New York

    Google Scholar 

  11. Di Gregorio R (2009) A novel method for the singularity analysis of planar mechanisms with more than one degree of freedom. Mech Mach Theory 44(1):83–102

    Article  MATH  Google Scholar 

  12. Newton I (1687) Philosophiæ Naturalis Principia Mathematica. S. Pepys, Reg. Soc. Præses, London

  13. Pennock GR, Israr A (2009) Kinematic analysis and synthesis of an adjustable six-bar linkare. Mech Mach Theory 44(2):306–323

    Article  MATH  Google Scholar 

  14. Hunt KH (1983) Structural kinematics of in-parallel-actuated robot-arms. ASME J Mech Transm Autom Des 105(4):705–712

    Article  Google Scholar 

  15. Gosselin CM, Sefrioui J (1991) Polynomial solutions for the direct kinematic problem of planar three-degree-of-freedom parallel manipulator. In: Proceedings of the 1991 international conference on advanced robotics, Pisa, Italy, pp 1121–1129

  16. Tsai L-W (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York

    Google Scholar 

  17. Primrose EJF, Freudenstein F, Roth B (1967) Six-bar motion. Arch Ration Mech Anal 24(1):22–77

    MathSciNet  MATH  Google Scholar 

  18. Watanabe K, Funabashi H (1984) Kinematic analysis of Stephenson six-link mechanisms. Bull Jpn Soc Mech Eng 27(234):2863–2878

    Article  Google Scholar 

  19. Watanabe K, Katoh H (2004) Identification of motion domains of planar six-link mechanisms of the Stephenson-type. Mech Mach Theory 39(10):1081–1099

    Article  MATH  Google Scholar 

  20. Simionescu PA, Smith MR (2001) Four- and six-bar function cognates and overconstrained mechanisms. Mech Mach Theory 36(8):913–924

    Article  MATH  Google Scholar 

  21. Di Gregorio R (2008) An Algorithm for analytically calculating the positions of the secondary instant centers of indeterminate linkages. ASME J Mech Des 130(4):042303-1–042303-9

    Article  Google Scholar 

Download references

Acknowledgments

This work has been developed at the Laboratory of Advanced Mechanics (MECH–LAV) of Ferrara Technopole, supported by UNIFE and MIUR funds and by Regione Emilia Romagna (District Councillorship for Productive Assets, Economic Development, Telematic Plan) POR-FESR 2007–2013, Attività I.1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Di Gregorio.

Appendices

Appendix 1

The following vector equations can be written (see Fig. 5)

$$ \left( {{\mathbf{I}}_{71}^{(1)} {-}{\mathbf{A}}} \right) = {\text{w}}_{1} ( {{\mathbf{B}}{-}{\mathbf{A}}}) $$
(42a)
$$ \left( {{\mathbf{I}}_{71}^{(1)} {-}{\mathbf{A}}} \right) = {\text{w}}_{2} ( {{\mathbf{M}}{-}{\mathbf{L}}}) + ( {{\mathbf{L}}{-}{\mathbf{A}}}) $$
(42b)
$$ \left( {{\mathbf{I}}_{71}^{(2)} {-}{\mathbf{A}}} \right) = {\text{w}}_{3} ( {{\mathbf{B}}{-}{\mathbf{A}}}) $$
(42c)
$$ \left( {{\mathbf{I}}_{71}^{(2)} {-}{\mathbf{A}}} \right) = {\text{w}}_{4} ( {{\mathbf{E}}{-}{\mathbf{D}}}) + ( {{\mathbf{D}}{-}{\mathbf{A}}}) $$
(42d)

where the scalar coefficients wj, for j = 1,…,4, are unknowns to be determined; whereas, the explicit expressions of (BA), (LA) and (DA) are given by Eqs. (25) and those of (ML) and (ED) by Eqs. (26).

The linear elimination of (I (1)71 A) and (I (2)71 A) from Eqs. (42) yields the following two vector equations

$$ {\text{w}}_{1} ( {{\mathbf{B}}{-}{\mathbf{A}}}) - {\text{w}}_{2} ( {{\mathbf{M}}{-}{\mathbf{L}}}) = ( {{\mathbf{L}}{-}{\mathbf{A}}}) $$
(43a)
$$ {\text{w}}_{3} ( {{\mathbf{B}}{-}{\mathbf{A}}}) - {\text{w}}_{4} ( {{\mathbf{E}}{-}{\mathbf{D}}}) = ( {{\mathbf{D}}{-}{\mathbf{A}}}) $$
(43b)

which are two linear systems of two scalar equations in two unknowns whose solution is

$$ {\text{w}}_{1} = \frac{{({\mathbf{L}}{-}{\mathbf{A}}) \cdot [{\mathbf{k}} \times ({\mathbf{M}}{-}{\mathbf{L}})]}}{{({\mathbf{B}}{-}{\mathbf{A}}) \cdot [{\mathbf{k}} \times ({\mathbf{M}}{-}{\mathbf{L}})]}} $$
(44a)
$$ {\text{w}}_{2} = - \frac{{({\mathbf{L}}{-}{\mathbf{A}}) \cdot [{\mathbf{k}} \times ({\mathbf{B}}{-}{\mathbf{A}})]}}{{({\mathbf{M}}{-}{\mathbf{L}}) \cdot [{\mathbf{k}} \times ({\mathbf{B}}{-}{\mathbf{A}})]}} $$
(44b)
$$ {\text{w}}_{3} = \frac{{({\mathbf{D}}{-}{\mathbf{A}}) \cdot [{\mathbf{k}} \times ({\mathbf{E}}{-}{\mathbf{D}})]}}{{({\mathbf{B}}{-}{\mathbf{A}}) \cdot [{\mathbf{k}} \times ({\mathbf{E}}{-}{\mathbf{D}})]}} $$
(44c)
$$ {\text{w}}_{4} = - \frac{{({\mathbf{D}}{-}{\mathbf{A}}) \cdot [{\mathbf{k}} \times ({\mathbf{B}}{-}{\mathbf{A}})]}}{{({\mathbf{E}}{-}{\mathbf{D}}) \cdot [{\mathbf{k}} \times ({\mathbf{B}}{-}{\mathbf{A}})]}} $$
(44d)

Formulas (44) provide the explicit expressions of the scalar coefficients wj, for j = 1,…,4, as a function of the mechanism configuration. Eventually, the introduction of such expressions into Eqs. (42) yields the explicit expressions of (I (1)71 A) and (I (2)71 A) as a function of the mechanism configuration.

Appendix 2

The time derivative of Eqs. (27a) and (27b) yields

$$ {\text{n}}_{11} {\dot{\uptheta }}_{ 2 1} + {\text{n}}_{12}\upomega_{71} + {\text{n}}_{13} {\dot{\text{q}}}_{ 1} = 0 $$
(45a)
$$ {\text{n}}_{21} {\dot{\uptheta }}_{ 2 1} + {\text{n}}_{22}\upomega_{71} + {\text{n}}_{23} {\dot{\text{q}}}_{ 2} = 0 $$
(45b)

where

$$ \begin{aligned} {\text{n}}_{11} &= {\text{ab}}\left[ \sin (\uptheta_{71} +\upgamma)\cos\uptheta_{21} \right. \\ &\left. \quad- \cos(\uptheta_{71} +\upgamma) \sin \uptheta_{21} \right] \\ & \quad {-}\,{\text{a}}^{2} \left( \cos\uptheta_{21} \sin q_{1} \right. \\ & \left.\quad - \sin \uptheta_{21} \cos q_{1}\right) + {\text{ca}}\,\cos\uptheta_{21} \\ \end{aligned}$$
(46a)
$$ \begin{aligned} {\text{n}}_{12} & = {\text{ab}}\left[\cos(\uptheta_{71} +\upgamma)\left( { \sin \uptheta_{21}- \sin q_{1} } \right) \right.\\ &\left. \quad - \sin (\uptheta_{71} +\upgamma)\left({\cos\uptheta_{21} -\cos q_{1}} \right)\right] \\&\quad + {\text{cb}}\,\cos(\uptheta_{71} + {\upgamma }) \\\end{aligned} $$
(46b)
$$ \begin{aligned} {\text{n}}_{13} & = {\text{ab}}\left[ \sin q_{1} \cos(\uptheta_{71} +\upgamma) \right. \\ &\left.\quad {-}\,\cos q_{1} \sin (\uptheta_{71} +\upgamma)\right] \\ & \quad {-}\,{\text{a}}^{2} ( \sin \uptheta_{21} \cos q_{1} -\cos\uptheta_{21} \sin q_{1} )\\ &\quad {-}\,{\text{ca}}\,\cos q_{1} \\ \end{aligned} $$
(46c)
$$ \begin{aligned} {\text{n}}_{21} & = {\text{ab}}( \sin \uptheta_{71} \cos\uptheta_{21} - \cos\uptheta_{71} \sin \uptheta_{21} ) \\ & \quad {-}\,{\text{a}}^{2} (\cos\uptheta_{21} \sin q_{2} - \sin \uptheta_{21} \cos q_{2} ) \\ &\quad+ {\text{ha}}\, \sin \uptheta_{21} \\ \end{aligned} $$
(46d)
$$ \begin{aligned} {\text{n}}_{22} & = {\text{ab}}\left[\cos\uptheta_{71} ( \sin \uptheta_{21} - \sin q_{2} )\right. \\ & \left.\quad -\, \sin \uptheta_{71} (\cos\uptheta_{21} - \cos q_{2} )\right] + {\text{hb}}\, \sin \uptheta_{71} \\ \end{aligned} $$
(46e)
$$ \begin{aligned} {\text{n}}_{23} & = {\text{ab}}(\cos\uptheta_{71} \sin q_{2} - \sin \uptheta_{71} \cos q_{2} ) \\ & \quad{-}\,{\text{a}}^{2} ( \sin \uptheta_{21} \cos q_{2} - \cos\uptheta_{21} \sin q_{2} )\\ &\quad {-}\,{\text{ha}}\, \sin q_{2} \\ \end{aligned} $$
(46f)

The subtraction of the product of Eq. (45a) by n21 from the product of Eq. (45b) by n11 yields

$$ \left( {{\text{n}}_{22} {\text{n}}_{11} - {\text{n}}_{21} {\text{n}}_{12} } \right)\upomega_{71} = {\text{n}}_{21} {\text{n}}_{13} {\dot{\text{q}}}_{ 1} - {\text{n}}_{23} {\text{n}}_{11} {\dot{\text{q}}}_{ 2} $$
(47)

whose comparison with Eq. (28b) gives, for g1 and g2, the following explicit expressions as a function of the mechanism configuration

$$ {\text{g}}_{1} = \frac{{{\text{n}}_{21} {\text{n}}_{13} }}{{{\text{n}}_{22} {\text{n}}_{11} - {\text{n}}_{21} {\text{n}}_{12} }} $$
(48a)
$$ {\text{g}}_{2} = \frac{{{\text{n}}_{23} {\text{n}}_{11} }}{{{\text{n}}_{21} {\text{n}}_{12} - {\text{n}}_{22} {\text{n}}_{11} }} $$
(48b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Gregorio, R. Kinematics and dynamics of planar mechanisms reinterpreted in rigid-body’s configuration space. Meccanica 51, 993–1005 (2016). https://doi.org/10.1007/s11012-015-0251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0251-8

Keywords

Navigation