Skip to main content
Log in

Cohesive zone models and impact damage predictions for composite structures

Meccanica Aims and scope Submit manuscript

Abstract

This article surveys existing cohesive zone models (CZM) and their use in numerical simulations for analysis impacts on composite structures and predicting the damage induced. These models are used for matrix cracks and delamination. The first part of article gives the required background on failure criteria for predicting the onset of delaminations, on fracture mechanics and the various types of CZM. The second part discusses applications of CZM to several types of impact problems with composite structures. Applications for these models to other problems are briefly mentioned at the end. CZM are now part of state of the art numerical simulations with progressive damage analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Abrate S (2005) Impact on composite structures. Cambridge University Press, Cambridge

    Google Scholar 

  2. Garg AC (1988) Delamination—a damage mode in composite structures. Eng Fract Mech 29:557–584

    Article  Google Scholar 

  3. Bolotin VV (1996) Delaminations in composite structures: its origin, buckling, growth and stability. Compos Part B Eng 27:129–145

    Article  Google Scholar 

  4. Bolotin VV (2001) Mechanics of delaminations in laminate composite structures. Mech Compos Mater 37:367–380

    Article  Google Scholar 

  5. Tay TE (2003) Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl Mech Rev 56:1–32

    Article  ADS  Google Scholar 

  6. Wisnom MR (2012) The role of delamination in failure of fibre-reinforced composites. Philos Transac R Soc A Math Phys Eng Sci 370:1850–1870. doi:10.1098/rsta.2011.0441

    Article  ADS  Google Scholar 

  7. Lee JD (1982) Three dimensional finite element analysis of damage accumulation in composite laminate. Comput Struct 15:335–350

    Article  MATH  Google Scholar 

  8. Zhang Z, Shen J, Zhong W, Sun Z (2002) A dynamic model of ceramic/fibre-reinforced plastic hybrid composites under projectile striking. Proc Inst Mech Eng Part G J Aerosp Eng 216:325–331

    Article  Google Scholar 

  9. Hatami-Marbini H, Pietruszczak S (2007) On inception of cracking in composite materials with brittle matrix. Comput Struct 85:1177–1184

    Article  Google Scholar 

  10. Christensen RM, DeTeresa SJ (2004) Delamination failure investigation for out-of-plane loading in laminates. J Compos Mater 38:2231–2238

    Article  Google Scholar 

  11. Cesari F, Dal Re V, Minak G, Zucchelli A (2007) Damage and residual strength of laminated carbon–epoxy composite circular plates loaded at the centre. Compos Part A Appl Sci Manuf 38:1163–1173

    Article  Google Scholar 

  12. Green ER, Morrison CJ, Luo RK (2000) Simulation and experimental investigation of impact damage in composite plates with holes. J Compos Mater 34:502–521

    Article  Google Scholar 

  13. Hou JP, Petrinic N, Ruiz C (2001) A delamination criterion for laminated composites under low-velocity impact. Compos Sci Technol 61:2069–2074

    Article  Google Scholar 

  14. Hou JP, Petrinic N, Ruiz C, Hallett SR (2000) Prediction of impact damage in composite plates. Compos Sci Technol 60:273–281

    Article  Google Scholar 

  15. Luo RK, Green ER, Morrison CJ (1999) Impact damage analysis of composite plates. Int J Impact Eng 22:435–447

    Article  Google Scholar 

  16. Luo RK, Green ER, Morrison CJ (2001) An approach to evaluate the impact damage initiation and propagation in composite plates. Compos Part B Eng 32:513–520

    Article  Google Scholar 

  17. Wagner W, Gruttmann F, Sprenger W (2001) A finite element formulation for the simulation of propagating delaminations in layered composite structures. Int J Numer Meth Eng 51:1337–1359

    Article  MATH  Google Scholar 

  18. Zhao GP, Cho CD (2007) Damage initiation and propagation in composite shells subjected to impact. Compos Struct 78:91–100

    Article  Google Scholar 

  19. Zhao G, Cho C (2004) On impact damage of composite shells by a low-velocity projectile. J Compos Mater 38:1231–1254

    Article  Google Scholar 

  20. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  21. Gómez-del Rıo T, Zaera R, Barbero E, Navarro C (2005) Damage in CFRPs due to low velocity impact at low temperature. Compos Part B Eng 36:41–50

    Article  Google Scholar 

  22. Li CF, Hu N, Yin YJ et al (2002) Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model. Compos Part A Appl Sci Manuf 33:1055–1062

    Article  Google Scholar 

  23. Her S-C, Liang Y-C (2004) The finite element analysis of composite laminates and shell structures subjected to low velocity impact. Compos Struct 66:277–285

    Article  Google Scholar 

  24. Kim J-S, Chung S-K (2007) A study on the low-velocity impact response of laminates for composite railway bodyshells. Compos Struct 77:484–492

    Article  Google Scholar 

  25. Huang C-H, Lee Y-J (2003) Experiments and simulation of the static contact crush of composite laminated plates. Compos Struct 61:265–270

    Article  Google Scholar 

  26. Lee Y-J, Huang C-H (2003) Ultimate strength and failure process of composite laminated plates subjected to low-velocity impact. J Reinf Plast Compos 22:1059–1081

    Article  Google Scholar 

  27. Choi HY, Chang F-K (1992) A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J Compos Mater 26:2134–2169

    Article  Google Scholar 

  28. Brewer JC, Lagace PA (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 22:1141–1155

    Article  Google Scholar 

  29. Naik NK, Sekher YC, Meduri S (2000) Polymer matrix woven fabric composites subjected to low velocity impact: part I-Damage initiation studies. J Reinf Plast Compos 19:912–954

    Article  Google Scholar 

  30. Naik NK, Meduri S, Chandrasekher Y (2001) Polymer matrix woven fabric composites subjected to low velocity impact: part III—Effect of incident impact velocity and impactor mass. J Reinf Plast Compos 20:720–743

    Google Scholar 

  31. Naik NK, Chandra Sekher Y, Meduri S (2000) Damage in woven-fabric composites subjected to low-velocity impact. Compos Sci Technol 60:731–744

    Article  Google Scholar 

  32. Li X, Hallett SR, Wisnom MR (2008) Predicting the effect of through-thickness compressive stress on delamination using interface elements. Compos Part A Appl Sci Manuf 39:218–230. doi:10.1016/j.compositesa.2007.11.005

    Article  Google Scholar 

  33. Yeh H-Y, Kim CH (1994) The Yeh-Stratton criterion for composite materials. J Compos Mater 28:926–939

    Article  Google Scholar 

  34. Liu X, Wang G (2007) Progressive failure analysis of bonded composite repairs. Compos Struct 81:331–340

    Article  Google Scholar 

  35. Chen G, Li Z, Kou C, Gui L (2004) Finite element analysis of low-velocity impact damage of stitched laminates. J Reinf Plast Compos 23:987–995

    Article  Google Scholar 

  36. Fenske MT, Vizzini AJ (2001) The inclusion of in-plane stresses in delamination criteria. J Compos Mater 35:1325–1342

    Google Scholar 

  37. Gdoutos EE (2006) Fracture mechanics: an introduction. Springer, Berlin

    Google Scholar 

  38. Timoshenko SP (1987) Goodier JN theory of elasticity. McGraw-Hill, New York

    Google Scholar 

  39. Inglis CE (1997) Stresses in a plate due to the presence of cracks and sharp corners. Spie Milest Ser MS 137:3–17

    Google Scholar 

  40. Griffith AA (1920) VI. The phenomena of rupture and F low in solids. Phil Trans R Soc Lond A 221:163–198

  41. Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech 5:49

    Google Scholar 

  42. Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech

  43. Wu EM, Reuter RC Jr (1965) Crack extension in fiberglass reinforced plastics. Department of Theoretical and Applied Mechanics, University of Illinois

  44. Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449

    Article  Google Scholar 

  45. Abrate S (1991) Matrix cracking in laminated composites: a review. Compos Eng 1:337–353. doi:10.1016/0961-9526(91)90039-U

    Article  Google Scholar 

  46. Williams ML (1959) The stresses around a fault or crack in dissimilar media. Bull Seismol Soc Am 49:199–204

    Google Scholar 

  47. England AH (1965) A crack between dissimilar media. J Appl Mech 32:400–402

    Article  Google Scholar 

  48. Mulville DR, Mast PW, Vaishnav RN (1976) Strain energy release rate for interfacial cracks between dissimilar media. Eng Fract Mech 8:555–565

    Article  Google Scholar 

  49. He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25:1053–1067

    Article  Google Scholar 

  50. He MY, Evans AG, Hutchinson JW (1994) Crack deflection at an interface between dissimilar elastic materials: role of residual stresses. Int J Solids Struct 31:3443–3455

    Article  MATH  Google Scholar 

  51. He M-Y, Hutchinson JW (1989) Kinking of a crack out of an interface. J Appl Mech 56:270–278

    Article  Google Scholar 

  52. Ryoji Y, Jin-Quan X (1992) Stress based criterion for an interface crack kinking out of the interface in dissimilar materials. Eng Fract Mech 41:635–644. doi:10.1016/0013-7944(92)90150-D

    Article  Google Scholar 

  53. Rudas M, Bush MB, Reimanis IE (2004) The kinking behaviour of a bimaterial interface crack under indentation loading. Eng Anal Boundary Elem 28:1455–1462. doi:10.1016/j.enganabound.2004.08.002

    Article  MATH  Google Scholar 

  54. Carlsson LA, Prasad S (1993) Interfacial fracture of sandwich beams. Eng Fract Mech 44:581–590

    Article  ADS  Google Scholar 

  55. Prasad S, Carlsson LA (1994) Debonding and crack kinking in foam core sandwich beams—I. Analysis of fracture specimens. Eng Fract Mech 47:813–824. doi:10.1016/0013-7944(94)90061-2

    Article  Google Scholar 

  56. Prasad S, Carlsson LA (1994) Debonding and crack kinking in foam core sandwich beams—II. Exp Invest Eng Fract Mech 47:825–841. doi:10.1016/0013-7944(94)90062-0

    Article  Google Scholar 

  57. Guo C, Sun CT (1998) Dynamic Mode-I crack-propagation in a carbon/epoxy composite. Compos Sci Technol 58:1405–1410. doi:10.1016/S0266-3538(98)00025-6

    Article  Google Scholar 

  58. Sun CT, Tsai JL Dynamic interlaminar fracture toughness in polymeric composites. In: Proceedings of the ICCM12, Paper 1316

  59. Tsai JL, Guo C, Sun CT (2001) Dynamic delamination fracture toughness in unidirectional polymeric composites. Compos Sci Technol 61:87–94

    Article  Google Scholar 

  60. Sun C, Han C (2004) A method for testing interlaminar dynamic fracture toughness of polymeric composites. Compos Part B Eng 35:647–655. doi:10.1016/j.compositesb.2004.04.006

    Article  Google Scholar 

  61. Smiley AJ, Pipes RB (1987) Rate effects on mode I interlaminar fracture toughness in composite materials. J Compos Mater 21:670–687

    Article  Google Scholar 

  62. Gillespie JW Jr, Carlsson LA, Smiley AJ (1987) Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/peek. Compos Sci Technol 28:1–15

    Article  Google Scholar 

  63. Cantwell WJ (1996) Loading rate effects in the mode II fracture of carbon fibre poly-etherether-ketone composites. J Mater Sci Lett 15:639–641

    Article  MathSciNet  Google Scholar 

  64. Cantwell WJ (1997) The influence of loading rate on the mode II interlaminar fracture toughness of composite materials. J Compos Mater 31:1364–1380

    Article  Google Scholar 

  65. Berger L, Cantwell WJ (2001) Temperature and loading rate effects in the mode II interlaminar fracture behavior of carbon fiber reinforced PEEK. Polym Compos 22:271–281

    Article  Google Scholar 

  66. Smiley AJ, Pipes RB (1987) Rate sensitivity of mode II interlaminar fracture toughness in graphite/epoxy and graphite/PEEK composite materials. Compos Sci Technol 29:1–15

    Article  Google Scholar 

  67. Pennas D, Cantwell WJ, Compston P (2007) The influence of strain rate on the mode III interlaminar fracture of composite materials. J Compos Mater 41:2595–2614

    Article  Google Scholar 

  68. Gol’dshtein RV (1967) On surface waves in joined elastic materials and their relation to crack propagation along the junction: PMM 31(3):468–475. J Appl Math Mech 31:497–502

  69. Brock LM, Achenbach JD (1973) Extension of an interface flaw under the influence of transient waves. Int J Solids Struct 9:53–68

    Article  MATH  Google Scholar 

  70. Atkinson C (1977) Dynamic crack problems in dissimilar media. Mech Fract 4:213–248

    Google Scholar 

  71. Willis JR (1971) Fracture mechanics of interfacial cracks. J Mech Phys Solids 19:353–368

    Article  ADS  MATH  Google Scholar 

  72. Deng X (1993) General crack-tip fields for stationary and steadily growing interface cracks in anisotropic bimaterials. J Appl Mech 60:183–189

    Article  MATH  Google Scholar 

  73. Yang W, Suo Z, Shih CF (1991) Mechanics of dynamic debonding. Proc R Soc Lond A 433:679–697

    Article  ADS  MATH  Google Scholar 

  74. Tippur HV, Rosakis AJ (1991) Quasi-static and dynamic crack growth along bimaterial interfaces: a note on crack-tip field measurements using coherent gradient sensing. Exp Mech 31:243–251

    Article  Google Scholar 

  75. Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  76. Liu C, Lambros J, Rosakis AJ (1993) Highly transient elastodynamic crack growth in a bimaterial interface: higher order asymptotic analysis and optical experiments. J Mech Phys Solids 41:1887–1954

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. Lambros J, Rosakis AJ (1995) Dynamic decohesion of bimaterials: experimental observations and failure criteria. Int J Solids Struct 32:2677–2702

    Article  Google Scholar 

  78. Lambros J, Rosakis AJ (1995) Shear dominated transonic interfacial crack growth in a bimaterial-I. Experimental observations. J Mech Phys Solids 43:169–188. doi:10.1016/0022-5096(94)00071-C

    Article  ADS  MATH  Google Scholar 

  79. Singh RP, Lambros J, Shukla A, Rosakis AJ (1997) Investigation of the mechanics of intersonic crack propagation along a bimaterial interface using coherent gradient sensing and photoelasticity. Proc R Soc Lond Ser A Math Phys Eng Sci 453:2649–2667

    Article  ADS  Google Scholar 

  80. Rosakis AJ, Samudrala O, Singh RP, Shukla A (1998) Intersonic crack propagation in bimaterial systems. J Mech Phys Solids 46:1789–1814. doi:10.1016/S0022-5096(98)00036-2

    Article  ADS  MATH  Google Scholar 

  81. Lambros J, Rosakis AJ (1995) Development of a dynamic decohesion criterion for subsonic fracture of the interface between two dissimilar materials. Proc R Soc Lond A 451:711–736

    Article  ADS  Google Scholar 

  82. Kavaturu M, Shukla A, Rosakis AJ (1998) Intersonic crack propagation along interfaces: experimental observations and analysis. Exp Mech 38:218–225

    Article  Google Scholar 

  83. Yu C, Pandolfi A, Ortiz M et al (2002) Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates. Int J Solids Struct 39:6135–6157

    Article  MATH  Google Scholar 

  84. Liu C, Huang Y, Rosakis AJ (1995) Shear dominated transonic interfacial crack growth in a bimaterial I-II. Asymptotic fields and favorable velocity regimes. J Mech Phys Solids 43:189–206. doi:10.1016/0022-5096(94)00072-D

    Article  ADS  MATH  Google Scholar 

  85. Coker D, Rosakis AJ, Needleman A (2003) Dynamic crack growth along a polymer composite–Homalite interface. J Mech Phys Solids 51:425–460. doi:10.1016/S0022-5096(02)00082-0

    Article  ADS  MATH  Google Scholar 

  86. Lambros J, Rosakis AJ (1997) Dynamic crack initiation and growth in thick unidirectional graphite/epoxy plates. Compos Sci Technol 57:55–65

    Article  Google Scholar 

  87. Lambros J, Rosakis AJ (1997) An experimental study of dynamic delamination of thick fiber reinforced polymeric matrix composites. Exp Mech 37:360–366

    Article  Google Scholar 

  88. Elder DJ, Thomson RS, Nguyen MQ, Scott ML (2004) Review of delamination predictive methods for low speed impact of composite laminates. Compos Struct 66:677–683

    Article  Google Scholar 

  89. Davies GAO, Robinson P (1992) Predicting failure by debonding/delamination. AGARD, debonding/delamination of composites, p 28, SEE N 93-21507 07-24

  90. Davies GAO, Robinson P, Robson J, Eady D (1997) Shear driven delamination propagation in two dimensions. Compos Part A Appl Sci Manuf 28:757–765

    Article  Google Scholar 

  91. Davies GAO, Hitchings D, Ankersen J (2006) Predicting delamination and debonding in modern aerospace composite structures. Compos Sci Technol 66:846–854

    Article  Google Scholar 

  92. Davies GAO, Hitchings D, Wang J (2000) Prediction of threshold impact energy for onset of delamination in quasi-isotropic carbon/epoxy composite laminates under low-velocity impact. Compos Sci Technol 60:1–7

    Article  Google Scholar 

  93. Davies GAO, Hitchings D, Zhou G (1996) Impact damage and residual strengths of woven fabric glass/polyester laminates. Compos Part A Appl Sci Manuf 27:1147–1156

    Article  Google Scholar 

  94. Davies GAO, Zhang X (1995) Impact damage prediction in carbon composite structures. Int J Impact Eng 16:149–170

    Article  Google Scholar 

  95. Schoeppner GA, Abrate S (2000) Delamination threshold loads for low velocity impact on composite laminates. Compos Part A Appl Sci Manuf 31:903–915

    Article  Google Scholar 

  96. Olsson R (2001) Analytical prediction of large mass impact damage in composite laminates. Compos A Appl Sci Manuf 32:1207–1215

    Article  Google Scholar 

  97. Olsson R (2003) Closed form prediction of peak load and delamination onset under small mass impact. Compos Struct 59:341–349

    Article  MathSciNet  Google Scholar 

  98. Olsson R (2010) Analytical model for delamination growth during small mass impact on plates. Int J Solids Struct 47:2884–2892

    Article  MATH  Google Scholar 

  99. Olsson R, Donadon MV, Falzon BG (2006) Delamination threshold load for dynamic impact on plates. Int J Solids Struct 43:3124–3141

    Article  MATH  Google Scholar 

  100. Zheng D, Binienda WK (2007) Effect of permanent indentation on the delamination threshold for small mass impact on plates. Int J Solids Struct 44:8143–8158

    Article  MATH  Google Scholar 

  101. Banks-Sills L (1991) Application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev 44:447–461

    Article  ADS  Google Scholar 

  102. Banks-Sills L (2010) Update: application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev 63:020803

    Article  ADS  Google Scholar 

  103. Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938

    Article  Google Scholar 

  104. Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57:109–143

    Article  ADS  Google Scholar 

  105. Pietropaoli E, Riccio A, Zarrelli M (2008) Delamination growth and fibre/matrix progresive damage in composite plates under compression. In: The 13-th European conference on composite materials (ECCM13)

  106. Pietropaoli E, Riccio A (2011) Formulation and assessment of an enhanced finite element procedure for the analysis of delamination growth phenomena in composite structures. Compos Sci Technol 71:836–846

    Article  Google Scholar 

  107. Pietropaoli E, Riccio A (2010) On the robustness of finite element procedures based on virtual crack closure technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Compos Sci Technol 70:1288–1300

    Article  Google Scholar 

  108. Pietropaoli E, Riccio A (2011) A global/local finite element approach for predicting interlaminar and intralaminar damage evolution in composite stiffened panels under compressive load. Appl Compos Mater 18:113–125

    Article  ADS  Google Scholar 

  109. Yoshimura A, Nakao T, Takeda N (2009) Improvement of out-of-plane impact damage resistance of CFRP due to through-the-thickness stitching. Adv Compos Mater 18:121–134. doi:10.1163/156855109X428727

    Article  Google Scholar 

  110. Barenblatt G (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23:622–636

    Article  MathSciNet  MATH  Google Scholar 

  111. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  112. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  ADS  Google Scholar 

  113. Shet C, Chandra N (2002) Analysis of energy balance when using cohesive zone models to simulate fracture processes. J Eng Mater Technol Trans Asme 124:440–450. doi:10.1115/1.1494093

    Article  Google Scholar 

  114. Seagraves A, Radovitzky R (2010) Advances in cohesive zone modeling of dynamic fracture. Dynamic failure of materials and structures. Springer, Berlin, pp 349–405

  115. Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73:1783–1796. doi:10.1016/j.engfracmech.2006.03.006

    Article  Google Scholar 

  116. Shahwan KW, Waas AM (1997) Non-self-similar decohesion along a finite interface of unilaterally constrained delaminations. Proc R Soc Lond Ser A Math Phys Eng Sci 453:515–550

    Article  MathSciNet  ADS  MATH  Google Scholar 

  117. Cui W, Wisnom MR (1993) A combined stress-based and fracture-mechanics-based model for predicting delamination in composites. Composites 24:467–474

    Article  ADS  Google Scholar 

  118. Borg R, Nilsson L, Simonsson K (2002) Modeling of delamination using a discretized cohesive zone and damage formulation. Compos Sci Technol 62:1299–1314. doi:10.1016/S0266-3538(02)00070-2

    Article  Google Scholar 

  119. Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64:060802

    Article  Google Scholar 

  120. Bui VQ, Iannucci L, Robinson P, Pinho ST (2011) A coupled mixed-mode delamination model for laminated composites. J Compos Mater 45:1717–1729. doi:10.1177/0021998310386260

    Article  Google Scholar 

  121. Pinho ST, Iannucci L, Robinson P (2006) Formulation and implementation of decohesion elements in an explicit finite element code. Compos Part A Appl Sci Manuf 37:778–789. doi:10.1016/j.compositesa.2005.06.007

    Article  Google Scholar 

  122. May M, Hallett SR (2010) A combined model for initiation and propagation of damage under fatigue loading for cohesive interface elements. Compos Part A Appl Sci Manuf 41:1787–1796. doi:10.1016/j.compositesa.2010.08.015

    Article  Google Scholar 

  123. Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438. doi:10.1177/002199803034505

    Article  Google Scholar 

  124. Camanho PP, Davila CG, Pinho ST (2004) Fracture analysis of composite co-cured structural joints using decohesion elements. Fatigue Fract Eng Mater Struct 27:745–757. doi:10.1111/j.1460-2695.2004.00695.x

    Article  Google Scholar 

  125. Turon A, Camanho PP, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct 92:1857–1864. doi:10.1016/j.compstruct.2010.01.012

    Article  Google Scholar 

  126. Turon A, Davila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682. doi:10.1016/j.engfracmech.2006.08.025

    Article  Google Scholar 

  127. Gozluklu B, Coker D (2012) Modeling of the dynamic delamination of L-shaped unidirectional laminated composites. Compos Struct 94:1430–1442. doi:10.1016/j.compstruct.2011.11.015

    Article  Google Scholar 

  128. Faggiani A, Falzon BG (2010) Predicting low-velocity impact damage on a stiffened composite panel. Compos A Appl Sci Manuf 41:737–749

    Article  Google Scholar 

  129. Jiang W-G, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Meth Eng 69:1982–1995. doi:10.1002/nme.1842

    Article  MATH  Google Scholar 

  130. Li S, Thouless MD, Waas AM et al (2005) Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite. Compos Sci Technol 65:537–549. doi:10.1016/j.compscitech.2004.08.004

    Article  Google Scholar 

  131. Needleman A (2014) Some issues in cohesive surface modeling. Procedia IUTAM 10:221–246. doi:10.1016/j.piutam.2014.01.020

    Article  Google Scholar 

  132. Goyal VK, Johnson ER, Davila CG (2004) Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Compos Struct 65:289–305. doi:10.1016/j.comstruct.2003.11.005

    Article  Google Scholar 

  133. Balzani C, Wagner W (2008) An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng Fract Mech 75:2597–2615. doi:10.1016/j.engfracmech.2007.03.013

    Article  Google Scholar 

  134. Hoefnagels JPM, Neggers J, Timmermans PHM et al (2010) Copper-rubber interface delamination in stretchable electronics. Scripta Mater 63:875–878. doi:10.1016/j.scriptamat.2010.06.041

    Article  Google Scholar 

  135. Van der Sluis O, Engelen RAB, Timmermans PHM, Zhang GQ (2009) Numerical analysis of delamination and cracking phenomena in multi-layered flexible electronics. Microelectron Reliab 49:853–860

    Article  Google Scholar 

  136. Wagner W, Balzani C (2008) Simulation of delamination in stringer stiffened fiber-reinforced composite shells. Comput Struct 86:930–939. doi:10.1016/j.compstruc.2007.04.018

    Article  Google Scholar 

  137. Balzani C, Wagner W, Wilckens D et al (2012) Adhesive joints in composite laminates-a combined numerical/experimental estimate of critical energy release rates. Int J Adhesion Adhesive 32:23–38. doi:10.1016/j.ijadhadh.2011.09.002

    Google Scholar 

  138. Ouyang Z, Li G, Ibekwe S et al (2010) Crack initiation process of DCB specimens based on first-order shear deformation theory. J Reinf Plast Compos 29:651–663

    Article  Google Scholar 

  139. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282

    Article  MATH  Google Scholar 

  140. Alfano G (2006) On the influence of the shape of the interface law on the application of cohesive-zone models. Compos Sci Technol 66:723–730. doi:10.1016/j.compscitech.2004.12.024

    Article  Google Scholar 

  141. Corigliano A, Mariani S, Pandolfi A (2006) Numerical analysis of rate-dependent dynamic composite delamination. Compos Sci Technol 66:766–775. doi:10.1016/j.compscitech.2004.12.031

    Article  Google Scholar 

  142. Corigliano A, Mariani S, Pandolfi A (2003) Numerical modeling of rate-dependent debonding processes in composites. Compos Struct 61:39–50. doi:10.1016/S0263-8223(03)00030-8

    Article  Google Scholar 

  143. Rose JH, Ferrante J, Smith JR (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 47:675–678

    Article  ADS  Google Scholar 

  144. Rose JH, Smith JR, Ferrante J (1983) Universal features of bonding in metals. Phys Rev B 28:1835

    Article  ADS  Google Scholar 

  145. Xu X, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng 1:111–132. doi:10.1088/0965-0393/1/2/001

    Article  ADS  Google Scholar 

  146. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  ADS  MATH  Google Scholar 

  147. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  MATH  Google Scholar 

  148. Song S, Waas A (1994) Mode-I failure of laminated polymeric composites. Eng Fract Mech 49:17–27. doi:10.1016/0013-7944(94)90107-4

    Article  Google Scholar 

  149. Song SJ, Waas AM (1994) A spring foundation model for mode I failure of laminated composites based on an energy criterion. J Eng Mater Technol 116:512–516

    Article  Google Scholar 

  150. Zerbst U, Heinimann M, Donne CD, Steglich D (2009) Fracture and damage mechanics modelling of thin-walled structures—an overview. Eng Fract Mech 76:5–43. doi:10.1016/j.engfracmech.2007.10.005

    Article  Google Scholar 

  151. Chen J, Crisfield M, Kinloch AJ et al (1999) Predicting progressive delamination of composite material specimens via interface elements. Mech Compos Mater Struct 6:301–317. doi:10.1080/107594199305476

    Article  Google Scholar 

  152. Blackman BRK, Hadavinia H, Kinloch AJ, Williams JG (2003) The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int J Fract 119:25–46. doi:10.1023/A:1023998013255

    Article  Google Scholar 

  153. Bouvet C (2011) Dommages d’impact sur stratifié composite. Comptes-rendus des 17èmes Journées Nationales sur les Composites (JNC17)

  154. Davila CG, Rose CA, Camanho PP (2009) A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract 158:211–223. doi:10.1007/s10704-009-9366-z

    Article  MATH  Google Scholar 

  155. Liu X, Duddu R, Waisman H (2012) Discrete damage zone model for fracture initiation and propagation. Eng Fract Mech 92:1–18. doi:10.1016/j.engfracmech.2012.04.019

    Article  Google Scholar 

  156. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397

    Article  ADS  MATH  Google Scholar 

  157. Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41:1119–1135

    Article  ADS  MATH  Google Scholar 

  158. Gustafson PA, Waas AM (2008) Efficient and robust traction laws for the modeling of adhesively bonded joints. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 49th structures, structural dynamics, and materials conference, pp 2008–1847

  159. Pankow M, Waas AM, Yen CF, Ghiorse S (2011) Resistance to delamination of 3D woven textile composites evaluated using end notch flexure (ENF) tests: cohesive zone based computational results. Compos Part A Appl Sci Manuf 42:1863–1872. doi:10.1016/j.compositesa.2011.07.028

    Article  Google Scholar 

  160. Ridha M, Tan VBC, Tay TE (2011) Traction–separation laws for progressive failure of bonded scarf repair of composite panel. Compos Struct 93:1239–1245. doi:10.1016/j.compstruct.2010.10.015

    Article  Google Scholar 

  161. Parmigiani JP, Thouless MD (2007) The effects of cohesive strength and toughness on mixed-mode delamination of beam-like geometries. Eng Fract Mech 74:2675–2699. doi:10.1016/j.engfracmech.2007.02.005

    Article  Google Scholar 

  162. Li S, Thouless MD, Waas AM et al (2006) Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite. Eng Fract Mech 73:64–78. doi:10.1016/j.engfracmech.2005.07.004

    Article  Google Scholar 

  163. Østergaard RC (2008) Buckling driven debonding in sandwich columns. Int J Solids Struct 45:1264–1282. doi:10.1016/j.ijsolstr.2007.09.005

    Article  Google Scholar 

  164. Yuan H, Xu Y (2008) Computational fracture mechanics assessment of adhesive joints. Comput Mater Sci 43:146–156. doi:10.1016/j.commatsci.2007.07.053

    Article  Google Scholar 

  165. Nishikawa M, Okabe T, Takeda N (2007) Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading. Int J Solids Struct 44:3101–3113. doi:10.1016/j.ijsolstr.2006.09.007

    Article  MATH  Google Scholar 

  166. Pinto AMG, Magalhães AG, Campilho RDSG et al (2009) Single-lap joints of similar and dissimilar adherends bonded with an acrylic adhesive. J Adhesion 85:351–376. doi:10.1080/00218460902880313

    Article  Google Scholar 

  167. Morin D, Bourel B, Bennani B et al (2013) A new cohesive element for structural bonding modelling under dynamic loading. Int J Impact Eng 53:94–105. doi:10.1016/j.ijimpeng.2012.02.003

    Article  Google Scholar 

  168. Choules BD, Moshier MA, Hinrichsen RL (2006) Ram load simulation of wing skin-spar joints: new rate-dependent cohesive model. DTIC Document RHAMM-TR-05-01

  169. Elmarakbi AM, Hu N, Fukunaga H (2009) Finite element simulation of delamination growth in composite materials using LS-DYNA. Compos Sci Technol 69:2383–2391. doi:10.1016/j.compscitech.2009.01.036

    Article  Google Scholar 

  170. Rahul-Kumar P, Jagota A, Bennison SJ et al (1999) Polymer interfacial fracture simulations using cohesive elements. Acta Mater 47:4161–4169

    Article  Google Scholar 

  171. Geissler G, Kaliske M (2010) Time-dependent cohesive zone modelling for discrete fracture simulation. Eng Fract Mech 77:153–169. doi:10.1016/j.engfracmech.2009.09.013

    Article  Google Scholar 

  172. Tvergaard V, Hutchinson JW (1996) Effect of strain dependent cohesive zone model on predictions of interface crack growth. J Phys IV 6:165–172. doi:10.1051/jp4:1996616

    Google Scholar 

  173. Kubair DV, Geubelle PH, Huang YY (2002) Analysis of a rate-dependent cohesive model for dynamic crack propagation. Eng Fract Mech 70:685–704

    Article  Google Scholar 

  174. Glennie E (1971) Strain-rate dependent crack model. J Mech Phys Solids 19:255–271. doi:10.1016/0022-5096(71)90012-3

    Article  MathSciNet  ADS  Google Scholar 

  175. Corigliano A, Ricci M (2001) Rate-dependent interface models: formulation and numerical applications. Int J Solids Struct 38:547–576. doi:10.1016/S0020-7683(00)00088-3

    Article  MathSciNet  MATH  Google Scholar 

  176. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Meth Eng 68:542–582. doi:10.1002/nme.1728

    Article  MathSciNet  MATH  Google Scholar 

  177. Yang QD, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107–137. doi:10.1007/s10704-005-4729-6

    Article  MATH  Google Scholar 

  178. Katnam KB, Sargent JP, Crocombe AD et al (2010) Characterisation of moisture-dependent cohesive zone properties for adhesively bonded joints. Eng Fract Mech 77:3105–3119. doi:10.1016/j.engfracmech.2010.08.023

    Article  Google Scholar 

  179. Mubashar A, Ashcroft IA, Critchlow GW, Crocombe AD (2011) Strength prediction of adhesive joints after cyclic moisture conditioning using a cohesive zone model. Eng Fract Mech 78:2746–2760. doi:10.1016/j.engfracmech.2011.07.010

    Article  Google Scholar 

  180. Crocombe AD, Hua YX, Loh WK et al (2006) Predicting the residual strength for environmentally degraded adhesive lap joints. Int J Adhes Adhes 26:325–336. doi:10.1016/j.ijadhadh.2005.04.003

    Article  Google Scholar 

  181. Lijedahl CDM, Crocombe AD, Wahab MA, Ashcroft IA (2007) Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach. Int J Adhesion Adhesives 27:505–518. doi:10.1016/j.ijadhadh.2006.09.015

    Article  Google Scholar 

  182. Loh WK, Crocombe AD, Wahab MMA, Ashcroft IA (2002) Environmental degradation of the interfacial fracture energy in an adhesively bonded joint. Eng Fract Mech 69:2113–2128. doi:10.1016/S0013-7944(02)00004-8

    Article  Google Scholar 

  183. Sorensen L, Botsis J, Gmuer T, Humbert L (2008) Bridging tractions in mode I delamination: measurements and simulations. Compos Sci Technol 68:2350–2358. doi:10.1016/j.compscitech.2007.08.024

    Article  Google Scholar 

  184. Manshadi BD, Farmand-Ashtiani E, Botsis J, Vassilopoulos AP (2014) An iterative analytical/experimental study of bridging in delamination of the double cantilever beam specimen. Compos Part A Appl Sci Manuf 61:43–50. doi:10.1016/j.compositesa.2014.02.001

    Article  Google Scholar 

  185. Sun CT, Jin Z-H (2006) Modeling of composite fracture using cohesive zone and bridging models. Compos Sci Technol 66:1297–1302. doi:10.1016/j.compscitech.2005.10.013

    Article  Google Scholar 

  186. Bianchi F, Zhang X (2011) A cohesive zone model for predicting delamination suppression in z-pinned laminates. Compos Sci Technol 71:1898–1907. doi:10.1016/j.compscitech.2011.09.004

    Article  Google Scholar 

  187. Bianchi F, Zhang X (2012) Predicting mode-II delamination suppression in z-pinned laminates. Compos Sci Technol 72:924–932. doi:10.1016/j.compscitech.2012.03.003

    Article  Google Scholar 

  188. Dantuluri V, Maiti S, Geubelle PH et al (2007) Cohesive modeling of delamination in Z-pin reinforced composite laminates. Compos Sci Technol 67:616–631. doi:10.1016/j.compscitech.2006.07.024

    Article  Google Scholar 

  189. Cui H, Li Y, Koussios S, Beukers A (2013) Mixed mode cohesive law for Z-pinned composite analyses. Comput Mater Sci 75:60–68. doi:10.1016/j.commatsci.2013.04.006

    Article  Google Scholar 

  190. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781

    Article  Google Scholar 

  191. Allix O, Ladeveze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31:61–74. doi:10.1016/0263-8223(95)00002-X

    Article  Google Scholar 

  192. Schellekens J, Deborst R (1994) Free-edge delamination in carbon-epoxy laminates—a novel numerical experimental approach. Compos Struct 28:357–373. doi:10.1016/0263-8223(94)90118-X

    Article  Google Scholar 

  193. Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272

    Article  Google Scholar 

  194. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Meth Eng 50:1701–1736

    Article  MATH  Google Scholar 

  195. Dávila CG, Camanho PP, Turon Travesa A (2007) Cohesive elements for shells. NASA TP Technical Report 214869

  196. Dávila CG, Camanho PP, Turon A (2008) Effective simulation of delamination in aeronautical structures using shells and cohesive elements. J Aircr 45:663–672

    Article  Google Scholar 

  197. Bruno D, Greco F, Lonetti P (2005) Computation of energy release rate and mode separation in delaminated composite plates by using plate and interface variables. Mech Adv Mater Struct 12:285–304. doi:10.1080/15376490590953563

    Article  Google Scholar 

  198. Tenchev RT, Falzon BG (2006) A pseudo-transient solution strategy for the analysis of delamination by means of interface elements. Finite Elem Anal Des 42:698–708. doi:10.1016/j.finel.2005.10.006

    Article  Google Scholar 

  199. Bouvet C, Castanié B, Bizeul M, Barrau J-J (2009) Low velocity impact modelling in laminate composite panels with discrete interface elements. Int J Solids Struct 46:2809–2821. doi:10.1016/j.ijsolstr.2009.03.010

    Article  MATH  Google Scholar 

  200. Reedy ED, Mello FJ, Guess TR (1997) Modeling the initiation and growth of delaminations in composite structures. J Compos Mater 31:812–831

    Article  Google Scholar 

  201. Heimbs S, Lang H, Havar T (2012) High velocity impact on composite link of aircraft wing flap mechanism. Cent Eur J Eng 2:483–495

    Google Scholar 

  202. LLorca J, González C, Molina‐Aldareguía JM et al (2011) Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv Mater 23:5130–5147

  203. Palanivelu S, Van Paepegem W, Degrieck J et al (2009) Numerical energy absorption study of composite tubes for axial impact loadings. In: 17th international conference on composite materials (ICCM-17), Edinburgh, UK

  204. Fang G, Liang J, Wang B, Wang Y (2011) Effect of interface properties on mechanical behavior of 3D four-directional braided composites with large braid angle subjected to uniaxial tension. Appl Compos Mater 18:449–465

    Article  ADS  Google Scholar 

  205. Grujicic M, Arakere G, He T et al (2008) A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites. Mater Sci Eng A 498:231–241

    Article  Google Scholar 

  206. Grujicic M, Arakere G, He T et al (2009) Multi-scale ballistic material modeling of cross-plied compliant composites. Compos Part B Eng 40:468–482

    Article  Google Scholar 

  207. Grujicic M, Pandurangan B, Coutris N (2012) A computational investigation of the multi-hit ballistic-protection performance of laminated transparent-armor systems. J Mater Eng Perform 21:837–848

    Google Scholar 

  208. Naderi M, Khonsari MM (2013) Stochastic analysis of inter-and intra-laminar damage in notched PEEK laminates. Exp Polym Lett 7:383–395

    Article  Google Scholar 

  209. Aymerich F, Dore F, Priolo P (2008) Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos Sci Technol 68:2383–2390. doi:10.1016/j.compscitech.2007.06.015

    Article  Google Scholar 

  210. Ullah H, Harland AR, Silberschmidt VV (2012) Damage modelling in woven-fabric CFRP laminates under large-deflection bending. Comput Mater Sci 64:130–135

    Article  Google Scholar 

  211. Ullah H, Harland AR, Silberschmidt VV (2012) Experimental and numerical analysis of damage in woven GFRP composites under large-deflection bending. Appl Compos Mater 19:769–783. doi:10.1007/s10443-011-9242-7

    Article  ADS  Google Scholar 

  212. Wisnom MR (2010) Modelling discrete failures in composites with interface elements. Compos Part A Appl Sci Manuf 41:795–805

    Article  Google Scholar 

  213. Aymerich F, Dore F, Priolo P (2009) Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements. Compos Sci Technol 69:1699–1709. doi:10.1016/j.compscitech.2008.10.025

    Article  Google Scholar 

  214. Shi Y, Swait T, Soutis C (2012) Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct 94:2902–2913. doi:10.1016/j.compstruct.2012.03.039

    Article  Google Scholar 

  215. He W, Guan Z, Li X, Liu D (2013) Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure. Compos Struct 96:232–242. doi:10.1016/j.compstruct.2012.08.054

    Article  Google Scholar 

  216. Riccio A, De Luca A, Di Felice G, Caputo F (2014) Modelling the simulation of impact induced damage onset and evolution in composites. Compos Part B Eng 66:340–347. doi:10.1016/j.compositesb.2014.05.024

    Article  Google Scholar 

  217. Zhang Y, Zhu P, Lai X (2006) Finite element analysis of low-velocity impact damage in composite laminated plates. Mater Des 27:513–519

    Article  Google Scholar 

  218. Perillo G, Vedivik NP, Echtermeyer AT (2014) Damage development in stitch bonded GFRP composite plates under low velocity impact: experimental and numerical results. J Compos Mater 0021998314521474. doi:10.1177/0021998314521474

  219. Johnson AF, Holzapfel M (2006) Influence of delamination on impact damage in composite structures. Compos Sci Technol 66:807–815

    Article  Google Scholar 

  220. Johnson AF, Pickett AK, Rozycki P (2001) Computational methods for predicting impact damage in composite structures. Compos Sci Technol 61:2183–2192

    Article  Google Scholar 

  221. Johnson AF, Holzapfel M (2003) Modelling soft body impact on composite structures. Compos Struct 61:103–113

    Article  Google Scholar 

  222. Johnson AF, Holzapfel M (2006) Numerical prediction of damage in composite structures from soft body impacts. J Mater Sci 41:6622–6630

    Article  ADS  Google Scholar 

  223. Johnson HE, Louca LA, Mouring S, Fallah AS (2009) Modelling impact damage in marine composite panels. Int J Impact Eng 36:25–39

    Article  Google Scholar 

  224. Amaro AM, Reis PNB, Magalhães AG, de Moura M (2011) The influence of the boundary conditions on low-velocity impact composite damage. Strain 47:e220–e226

    Article  Google Scholar 

  225. Amaro AM, Santos JB, Cirne JS (2011) Delamination depth in composites laminates with interface elements and ultrasound analysis. Strain 47:138–145. doi:10.1111/j.1475-1305.2008.00491.x

    Article  Google Scholar 

  226. Geubelle PH, Baylor JS (1998) Impact-induced delamination of composites: a 2D simulation. Compos Part B Eng 29:589–602

    Article  Google Scholar 

  227. Wang W, Wan X, Zhou J et al (2014) Damage and failure of laminated carbon-fiber-reinforced composite under low-velocity impact. J Aerosp Eng 27:308–317. doi:10.1061/(ASCE)AS.1943-5525.0000243

    Article  Google Scholar 

  228. Airoldi A, Sala G, Bettini P, Baldi A (2013) An efficient approach for modeling interlaminar damage in composite laminates with explicit finite element codes. J Reinf Plast Compos 32:1075–1091. doi:10.1177/0731684412473004

    Article  Google Scholar 

  229. Aoki Y, Suemasu H, Ishikawa T (2007) Damage propagation in CFRP laminates subjected to low velocity impact and static indentation. Adv Compos Mater 16:45–61

    Article  Google Scholar 

  230. Aoki Y, Suemasu H (2003) Damage analysis in composite laminates by using an interface element. Adv Compos Mater 12:13–21

    Article  Google Scholar 

  231. Forghani A, Vaziri R (2009) Computational modeling of damage development in composite laminates subjected to transverse dynamic loading. J Appl Mech 76:051304

    Article  Google Scholar 

  232. Hongkarnjanakul N, Bouvet C, Rivallant S (2013) Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure. Compos Struct 106:549–559

    Article  Google Scholar 

  233. Bouvet C, Rivallant S, Barrau JJ (2012) Low velocity impact modeling in composite laminates capturing permanent indentation. Compos Sci Technol 72:1977–1988. doi:10.1016/j.compscitech.2012.08.019

    Article  Google Scholar 

  234. Bouvet C, Hongkarnjanakul N, Rivallant S, Barrau J-J (2013) Discrete impact modeling of inter- and intra-laminar failure in composites. In: Abrate S, Castanié B, Rajapakse YDS (eds) Dynamic failure of composite and sandwich structures. Springer, Netherlands, pp 339–392

    Chapter  Google Scholar 

  235. Rivallant S, Bouvet C, Hongkarnjanakul N (2013) Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements. Compos Part A Appl Sci Manuf 55:83–93. doi:10.1016/j.compositesa.2013.08.003

    Article  Google Scholar 

  236. Hongkarnjanakul N, Rivallant S, Bouvet C, Miranda A (2014) Permanent indentation characterization for low-velocity impact modelling using three-point bending test. J Compos Mater 48:2441–2454. doi:10.1177/0021998313499197

    Article  Google Scholar 

  237. Ullah H, Harland AR, Silberschmidt VV (2013) Damage and fracture in carbon fabric reinforced composites under impact bending. Compos Struct 101:144–156. doi:10.1016/j.compstruct.2013.02.001

    Article  Google Scholar 

  238. Shi Y, Pinna C, Soutis C (2014) Modelling impact damage in composite laminates: a simulation of intra-and inter-laminar cracking. Compos Struct 114:10–19

    Article  Google Scholar 

  239. Feng D, Aymerich F (2014) Finite element modelling of damage induced by low-velocity impact on composite laminates. Compos Struct 108:161–171. doi:10.1016/j.compstruct.2013.09.004

    Article  Google Scholar 

  240. Van der Meer FP, Sluys LJ, Hallett SR, Wisnom MR (2011) Computational modeling of complex failure mechanisms in laminates. J Compos Mater 46:603–623. doi:10.1177/0021998311410473

    Article  Google Scholar 

  241. Donadon MV, Iannucci L, Falzon BG et al (2008) A progressive failure model for composite laminates subjected to low velocity impact damage. Comput Struct 86:1232–1252. doi:10.1016/j.compstruc.2007.11.004

    Article  Google Scholar 

  242. Donadon MV, Arbelo MA, de Almeida SFM et al (2009) Bird strike modeling in composite stiffened panels. In: Proceedings of the PACAM XI

  243. Iannucci L, Willows ML (2006) An energy based damage mechanics approach to modelling impact onto woven composite materials—part I: numerical models. Compos A Appl Sci Manuf 37:2041–2056. doi:10.1016/j.compositesa.2005.12.013

    Article  Google Scholar 

  244. Guiamatsia I, Ankersen JK, Davies GAO, Iannucci L (2009) Decohesion finite element with enriched basis functions for delamination. Compos Sci Technol 69:2616–2624

  245. Chen J-F, Morozov EV, Shankar K (2014) Simulating progressive failure of composite laminates including in-ply and delamination damage effects. Compos Part A Appl Sci Manuf 61:185–200. doi:10.1016/j.compositesa.2014.02.013

    Article  Google Scholar 

  246. Harper PW, Hallett SR (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 75:4774–4792. doi:10.1016/j.engfracmech.2008.06.004

    Article  Google Scholar 

  247. Lampani L (2011) Finite element analysis of delamination of a composite component with the cohesive zone model technique. Eng Comput 28:30–46. doi:10.1108/02644401111097000

    Article  MATH  Google Scholar 

  248. Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fractur. J Phys IV 11:Pr5-43–Pr5-50. doi:10.1051/jp4:2001506

  249. Guiamatsia I, Davies GAO, Ankersen JK, Iannucci L (2010) A framework for cohesive element enrichment. Compos Struct 92:454–459

    Article  Google Scholar 

  250. Guiamatsia I, Ankersen JK, Iannucci L, Fouinneteau M (2013) Enriched finite elements for the efficient prediction of impact-induced damage in composite laminates. Compos Sci Technol 79:87–96. doi:10.1016/j.compscitech.2013.02.011

    Article  Google Scholar 

  251. Davies G a. O, Guiamatsia I (2012) The problem of the cohesive zone in numerically simulating delamination/debonding failure modes. Appl Compos Mater 19:831–838. doi:10.1007/s10443-012-9257-8

  252. Hu N, Zemba Y, Okabe T et al (2008) A new cohesive model for simulating delamination propagation in composite laminates under transverse loads. Mech Mater 40:920–935

    Article  Google Scholar 

  253. Heimbs S, Bergmann T, Schueler D, Toso-Pentecote N (2014) High velocity impact on preloaded composite plates. Compos Struct 111:158–168. doi:10.1016/j.compstruct.2013.12.031

    Article  Google Scholar 

  254. Heimbs S (2011) Bird strike simulations on composite aircraft structures. In: 2011 SIMULIA customer conference, Barcelona, Spain, pp 73–86

  255. Heimbs S, Bergmann T (2012) High-velocity impact behaviour of prestressed composite plates under bird strike loading. Int J Aerosp Eng 2012:1–11. doi:10.1155/2012/372167

    Article  Google Scholar 

  256. Guimard JM, Heimbs S (2011) Towards the industrial assessment of bird strike simulations on composite laminate structures. Composites 3:21–23

    Google Scholar 

  257. Georgiadis S, Gunnion AJ, Thomson RS, Cartwright BK (2008) Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Compos Struct 86:258–268. doi:10.1016/j.compstruct.2008.03.025

    Article  Google Scholar 

  258. Bayandor J, Johnson A, Thomson RS, Joosten M (2006) Impact damage modelling of composite aerospace structures subject to bird-strike. In: 25th International congress of the aeronautical sciences

  259. Siddens A, Bayandor J (2013) Multidisciplinary impact damage prognosis methodology for hybrid structural propulsion systems. Comput Struct 122:178–191. doi:10.1016/j.compstruc.2013.02.001

    Article  Google Scholar 

  260. Kim MK, Elder DJ, Wang CH, Feih S (2012) Interaction of laminate damage and adhesive disbonding in composite scarf joints subjected to combined in-plane loading and impact. Compos Struct 94:945–953

    Article  Google Scholar 

  261. Pinnoji PK, Mahajan P (2010) Analysis of impact-induced damage and delamination in the composite shell of a helmet. Mater Des 31:3716–3723. doi:10.1016/j.matdes.2010.03.011

    Article  Google Scholar 

  262. Kostopoulos V, Markopoulos YP, Giannopoulos G, Vlachos DE (2002) Finite element analysis of impact damage response of composite motorcycle safety helmets. Compos Part B Eng 33:99–107

    Article  Google Scholar 

  263. Perillo G, Vedivik NP, Echtermeyer AT (2014) Numerical and experimental investigation of impact on filament wound glass reinforced epoxy pipe. J Compos Mater 0021998314525485. doi:10.1177/0021998314525485

  264. Manikandan P, Chai GB (2014) A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load. Compos Struct 117:17–31. doi:10.1016/j.compstruct.2014.06.010

    Article  Google Scholar 

  265. Guiamatsia I, Falzon BG, Davies GAO, Iannucci L (2009) Element-free Galerkin modelling of composite damage. Compos Sci Technol 69:2640–2648

    Article  Google Scholar 

  266. Barbieri E, Meo M (2010) A meshless cohesive segments method for crack initiation and propagation in composites. Appl Compos Mater 18:45–63. doi:10.1007/s10443-010-9133-3

    Article  ADS  Google Scholar 

  267. Barbieri E, Meo M (2009) A meshfree penalty-based approach to delamination in composites. Compos Sci Technol 69:2169–2177. doi:10.1016/j.compscitech.2009.05.015

    Article  Google Scholar 

  268. Curiel Sosa JL, Karapurath N (2012) Delamination modelling of GLARE using the extended finite element method. Compos Sci Technol 72:788–791

    Article  Google Scholar 

  269. Xu J, Askari A, Weckner O, Silling S (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21:187–194. doi:10.1061/(ASCE)0893-1321(2008)21:3(187)

    Article  Google Scholar 

  270. Xu J, Askari A, Weckner O, Silling S (2007) Modeling hail impact damage and residual strength in composite structures. In: ICCM 16 conference, Kyoto, pp 8–13

  271. Jalalvand M, Czél G, Wisnom MR (2014) Numerical modelling of the damage modes in UD thin carbon/glass hybrid laminates. Compos Sci Technol 94:39–47. doi:10.1016/j.compscitech.2014.01.013

    Article  Google Scholar 

  272. Loikkanen M, Praveen G, Powell D (2008) Simulation of ballistic impact on composite panels. In: 10th International LS-DYNA users conference, pp 1–12

  273. Varas D, Artero-Guerrero JA, Pernas-Sánchez J, López-Puente J (2013) Analysis of high velocity impacts of steel cylinders on thin carbon/epoxy woven laminates. Compos Struct 95:623–629. doi:10.1016/j.compstruct.2012.08.015

    Article  Google Scholar 

  274. Pernas-Sánchez J, Artero-Guerrero JA, Zahr Viñuela J et al (2014) Numerical analysis of high velocity impacts on unidirectional laminates. Compos Struct 107:629–634. doi:10.1016/j.compstruct.2013.08.035

    Article  Google Scholar 

  275. Phadnis VA, Pandya KS, Naik NK et al (2013) Ballistic impact behaviour of woven fabric composite: finite element analysis and experiments. J Phys Conf Ser 451:012019. doi:10.1088/1742-6596/451/1/012019

    Article  ADS  Google Scholar 

  276. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525

    Article  Google Scholar 

  277. Yokozeki T (2011) Analysis of crack kinking in foam core sandwich beams. Compos Part A Appl Sci Manuf 42:1493–1499. doi:10.1016/j.compositesa.2011.06.017

    Article  Google Scholar 

  278. El-Sayed S, Sridharan S (2002) Cohesive layer models for predicting delamination growth and crack kinking in sandwich structures. Int J Fract 117:63–84

    Article  Google Scholar 

  279. Berggreen C, Simonsen BC, Borum KK (2006) Experimental and numerical study of interface crack propagation in foam-cored sandwich beams. J Compos Mater 41:493–520. doi:10.1177/0021998306065285

    Article  Google Scholar 

  280. Carlsson LA, Matteson RC, Aviles F, Loup DC (2005) Crack path in foam cored DCB sandwich fracture specimens. Compos Sci Technol 65:2612–2621

    Article  Google Scholar 

  281. Feng D, Aymerich F (2013) Damage prediction in composite sandwich panels subjected to low-velocity impact. Compos Part A Appl Sci Manuf 52:12–22

    Article  Google Scholar 

  282. Theotokoglou EE (2012) Prediction of crack propagation in sandwich beams under flexural loading. In: 15th European conference on composite materials (ECCM15), Venice, Italy

  283. Chen J (2002) Predicting progressive delamination of stiffened fibre-composite panel and repaired sandwich panel by decohesion models. J Thermoplast Compos Mater 15:429–442

    Article  Google Scholar 

  284. Chen J (2001) Application of decohesion model in predicting progressive delamination of stiffened fibre composite panel and repaired sandwich panel. In: 13th International conference on composite materials

  285. Ramantani DA, de Moura MFSF, Campilho RDSG, Marques AT (2010) Fracture characterization of sandwich structures interfaces under mode I loading. Compos Sci Technol 70:1386–1394. doi:10.1016/j.compscitech.2010.04.018

    Article  Google Scholar 

  286. Caner FC, Bažant ZP (2009) Size effect on strength of laminate-foam sandwich plates: finite element analysis with interface fracture. Compos Part B Eng 40:337–348. doi:10.1016/j.compositesb.2009.03.005

    Article  Google Scholar 

  287. El-Sayed S, Sridharan S (2002) Performance of a cohesive layer model in the prediction of interfacial crack growth in sandwich beams. J Sandw Struct Mater 4:31–47

    Article  Google Scholar 

  288. Sun S, Chen H (2011) The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model. Sci China Phys Mech Astron 54:1481–1487

    Article  ADS  Google Scholar 

  289. Lundsgaard-Larsen C, Berggreen C, Sørensen BF (2007) Measuring mixed mode cohesive laws for interfaces in sandwich structures. Experimental analysis of nano and engineering materials and structures. Springer, Berlin, pp 749–750

  290. Lundsgaard-Larsen C, Berggreen C, Sørensen BF (2007) Measuring mixed mode cohesive laws for interfaces in sandwich structures. In: Gdoutos EE (ed) Experimental analysis of nano and engineering materials and structures. Springer, Netherlands, pp 749–750

    Chapter  Google Scholar 

  291. Lundsgaard-Larsen C, Sørensen BF, Berggreen C, Østergaard RC (2008) A modified DCB sandwich specimen for measuring mixed-mode cohesive laws. Eng Fract Mech 75:2514–2530

    Article  Google Scholar 

  292. Lundsgaard-Larsen C, Berggreen C, Carlsson LA (2010) Tailoring sandwich face/core interfaces for improved damage tolerance—part I: finite element analysis. Appl Compos Mater 17:609–619. doi:10.1007/s10443-010-9131-5

    Article  ADS  Google Scholar 

  293. Lundsgaard-Larsen C, Berggreen C, Carlsson LA (2010) Tailoring sandwich face/core interfaces for improved damage tolerance—Part II: experiments. Appl Compos Mater 17:621–637. doi:10.1007/s10443-010-9132-4

    Article  ADS  Google Scholar 

  294. Davidson P, Waas AM, Yerramalli CS (2012) Experimental determination of validated, critical interfacial modes I and II energy release rates in a composite sandwich panel. Compos Struct 94:477–483. doi:10.1016/j.compstruct.2011.08.007

    Article  Google Scholar 

  295. Heimbs S, Cichosz J, Klaus M et al (2010) Sandwich structures with textile-reinforced composite foldcores under impact loads. Compos Struct 92:1485–1497. doi:10.1016/j.compstruct.2009.11.001

    Article  Google Scholar 

  296. Kilchert S, Johnson AF, Voggenreiter H (2014) Modelling the impact behaviour of sandwich structures with folded composite cores. Compos Part A Appl Sci Manuf 57:16–26. doi:10.1016/j.compositesa.2013.10.023

    Article  Google Scholar 

  297. Gopalakrishnan KC, Kumar RR, Lal SA (2012) Cohesive zone modeling of coupled buckling–debond growth in metallic honeycomb sandwich structure. J Sandw Struct Mater 14:679–693

    Google Scholar 

  298. Volokh KY, Needleman A (2002) Buckling of sandwich beams with compliant interfaces. Comput Struct 80:1329–1335

    Article  Google Scholar 

  299. Han T-S, Ural A, Chen C-S et al (2002) Delamination buckling and propagation analysis of honeycomb panels using a cohesive element approach. Int J Fract 115:101–123

    Article  Google Scholar 

  300. Mamalis AG, Robinson M, Manolakos DE et al (1997) Crashworthy capability of composite material structures. Compos Struct 37:109–134

    Article  Google Scholar 

  301. Mamalis AG, Manolakos DE, Demosthenous GA, Ioannidis MB (1998) Crashworthiness of composite thin-walled structures. CRC Press, Boca Raton

  302. Carruthers JJ, Kettle AP, Robinson AM (1998) Energy absorption capability and crashworthiness of composite material structures: a review. Appl Mech Rev 51:635–649

    Article  ADS  Google Scholar 

  303. Belingardi G, Chiandussi G (2011) Vehicle crashworthiness design—general principles and potentialities of composite material structures. Impact engineering of composite structures. Springer, Berlin, pp 193–264

  304. Lau ST, Said MR, Yaakob MY (2012) On the effect of geometrical designs and failure modes in composite axial crushing: a literature review. Compos Struct 94:803–812

    Article  Google Scholar 

  305. Belingardi G, Beyene AT, Koricho EG, Martorana B (2015) Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam. Compos Struct 120:483–495

    Article  Google Scholar 

  306. Belingardi G, Beyene AT, Koricho EG (2013) Geometrical optimization of bumper beam profile made of pultruded composite by numerical simulation. Compos Struct 102:217–225. doi:10.1016/j.compstruct.2013.02.013

    Article  Google Scholar 

  307. Marzbanrad J, Alijanpour M, Kiasat MS (2009) Design and analysis of an automotive bumper beam in low-speed frontal crashes. Thin Walled Struct 47:902–911

    Article  Google Scholar 

  308. Lim TS, Lee DG (2002) Mechanically fastened composite side-door impact beams for passenger cars designed for shear-out failure modes. Compos Struct 56:211–221

    Article  ADS  Google Scholar 

  309. Cheon SS, Lee DG, Jeong KS (1997) Composite side-door impact beams for passenger cars. Compos Struct 38:229–239

    Article  Google Scholar 

  310. Belingardi G, Boria S, Obradovic J (2013) Energy absorbing sacrificial structures made of composite materials for vehicle crash design. Dynamic failure of composite and sandwich structures. Springer, Berlin, pp 577–609

  311. Belingardi G, Obradovic J (2011) Crash analysis of composite sacrificial structure for racing car. Mobil Veh Mechan 37:41–55

    Google Scholar 

  312. Boria S, Belingardi G (2014) Composite impact attenuator with shell and solid modelling. In: 11th World congress on computational mechanics (WCC M XI)

  313. Boria S, Belingardi G (2012) Numerical investigation of energy absorbers in composite materials for automotive applications. Int J Crashworthiness 17:345–356. doi:10.1080/13588265.2011.648516

    Article  Google Scholar 

  314. Bisagni C, Di Pietro G, Fraschini L, Terletti D (2005) Progressive crushing of fiber-reinforced composite structural components of a Formula One racing car. Compos Struct 68:491–503. doi:10.1016/j.compstruct.2004.04.015

    Article  Google Scholar 

  315. Heimbs S, Strobl F, Middendorf P et al (2009) Crash simulation of an F1 racing car front impact structure. In: 7th European LS-DYNA users conference, Salzburg

  316. Feraboli P, Norris C, McLarty D (2007) Design and certification of a composite thin-walled structure for energy absorption. Int J Veh Des 44:247–267

    Article  Google Scholar 

  317. Castejon L, Miravete A, Cuartero J (2006) Composite bus rollover simulation and testing. Int J Heavy Veh Sys 13:281–297

    Article  Google Scholar 

  318. Friedman K, Hutchinson J, Weerth E, Mihora D (2006) Implementation of composite roof structures in transit buses to increase rollover roof strength and reduce the likelihood of rollover. Int J Crashworthiness 11:593–596

    Article  Google Scholar 

  319. Kang K, Chun H, Na W et al (2011) Optimum design of composite roll bar for improvement of bus rollover crashworthiness. In: Proceedings of the 18th international conference on composite materials

  320. Kang K-T, Chun H-J, Park J-C et al (2012) Design of a composite roll bar for the improvement of bus rollover crashworthiness. Compos Part B Eng 43:1705–1713

    Article  Google Scholar 

  321. Ko H-Y, Shin K-B, Jeon K-W, Cho S-H (2009) A study on the crashworthiness and rollover characteristics of low-floor bus made of sandwich composites. J Mech Sci Technol 23:2686–2693. doi:10.1007/s12206-009-0731-7

    Article  Google Scholar 

  322. Etherton JR, Ronaghi M, Current RS (2007) Development of a pultruded FRP composite material ROPS for farm tractors. Compos Struct 78:162–169. doi:10.1016/j.compstruct.2005.08.025

    Article  Google Scholar 

  323. Bank LC, Gentry TR (2001) Development of a pultruded composite material highway guardrail. Compos Part A Appl Sci Manuf 32:1329–1338

    Article  Google Scholar 

  324. Tabiei A, Yia WT, Goldberg R (2005) Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation. Int J Non Linear Mech 40:957–970. doi:10.1016/j.ijnonlinmec.2004.10.004

    Article  MATH  Google Scholar 

  325. Smith JR, Bank LC, Plesha ME (2000) Preliminary study of the behavior of composite material box beams subjected to impact. In: Sixth LS-DYNA users conference, p 111

  326. Palanivelu S, Van Paepegem W, Degrieck J et al (2010) Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: central delamination and triggering modelling. Polym Testing 29:729–741. doi:10.1016/j.polymertesting.2010.05.010

    Article  Google Scholar 

  327. Bussadori BP, Schuffenhauer K, Scattina A (2014) Modelling of CFRP crushing structures in explicit crash analysis. Compos Part B Eng 60:725–735

    Article  Google Scholar 

  328. Ghasemnejad H, Hadavinia H, Aboutorabi A (2010) Effect of delamination failure in crashworthiness analysis of hybrid composite box structures. Mater Des 31:1105–1116. doi:10.1016/j.matdes.2009.09.043

    Article  Google Scholar 

  329. Zarei H, Kröger M, Albertsen H (2008) An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Compos Struct 85:245–257. doi:10.1016/j.compstruct.2007.10.028

    Article  Google Scholar 

  330. Siromani D, Awerbuch J, Tan T-M (2014) Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression. Compos Part B Eng 64:50–58. doi:10.1016/j.compositesb.2014.04.008

    Article  Google Scholar 

  331. Kiani M, Shiozaki H, Motoyama K (2013) Using experimental data to improve crash modeling for composite materials. In: Patterson E, Backman D, Cloud G (eds) Composite materials and joining technologies for composites, vol 7. Springer, New York, pp 215–226

  332. Zhang P, Gui L-J, Fan Z-J et al (2013) Finite element modeling of the quasi-static axial crushing of braided composite tubes. Comput Mater Sci 73:146–153. doi:10.1016/j.commatsci.2013.01.026

    Article  Google Scholar 

  333. Pinho ST, Camanho PP, de Moura MF (2004) Numerical simulation of the crushing process of composite materials. Int J Crashworthiness 9:263–276. doi:10.1533/ijcr.2004.0287

    Article  Google Scholar 

  334. Akita R, Yokoyama A, Koike A et al (2013) Development of high performance FRP crush box. In: SAE-China, FISITA (eds) Proceedings of the FISITA 2012 world automotive congress. Springer, Berlin, Heidelberg, pp 869–878

  335. Greve L, Pickett AK (2006) Delamination testing and modelling for composite crash simulation. Compos Sci Technol 66:816–826. doi:10.1016/j.compscitech.2004.12.042

    Article  Google Scholar 

  336. Guida M, Marulo F (2014) Partial modeling of aircraft fuselage during an emergency crash landing. Procedia Eng 88:26–33. doi:10.1016/j.proeng.2014.11.122

    Article  Google Scholar 

  337. Waimer M, Kohlgrüber D, Hachenberg D, Voggenreiter H (2010) The kinematics model—a numerical method for the development of a crashworthy composite fuselage design of transport aircraft. In: Sixth triennial international aircraft fire and cabin safety research conference

  338. Heimbs S, Strobl F, Middendorf P, Guimard JM (2010) Composite crash absorber for aircraft fuselage applications. In: Jones N, Brebbia CA, Mander U (eds) Structures under shock and impact Xi, pp 3–14

  339. Heimbs S, Strobl F, Middendorf P (2011) Integration of a composite crash absorber in aircraft fuselage vertical struts. Int J Veh Struct Syst. doi:10.4273/ijvss.3.2.03

    Google Scholar 

  340. Guida M, Marulo F, Montesarchio B, Bruno M (2014) Innovative anti crash absorber for a crashworthy landing gear. Appl Compos Mater 21:483–494. doi:10.1007/s10443-013-9351-6

    Article  ADS  Google Scholar 

  341. Heimbs S, Bergmann T (2014) Bearing mode absorber—on the energy absorption capability of pulling a bolt through a composite or sandwich plate. Procedia Eng 88:149–156. doi:10.1016/j.proeng.2014.11.138

    Article  Google Scholar 

  342. McCarthy MA, Harte CG, Wiggenraad JFM et al (2000) Finite element modelling of crash response of composite aerospace sub-floor structures. Comput Mech 26:250–258. doi:10.1007/s004660000177

    Article  Google Scholar 

  343. McCarthy MA, Wiggenraad JFM (2001) Numerical investigation of a crash test of a composite helicopter subfloor structure. Compos Struct 51:345–359. doi:10.1016/S0263-8223(00)00150-1

    Article  Google Scholar 

  344. Heimbs S (2012) Energy absorption in aircraft structures. First international workshop on hydraulic equipment and support systems for mining IWHEM2012, Huludao, China

  345. Lavoie JA, Kellas S (1996) Dynamic crush tests of energy-absorbing laminated composite plates. Compos Part A Appl Sci Manuf 27:467–475. doi:10.1016/1359-835X(95)00058-A

    Article  Google Scholar 

  346. Cauchi Savona S, Hogg P (2006) Investigation of plate geometry on the crushing of flat composite plates. Compos Sci Technol 66:1639–1650. doi:10.1016/j.compscitech.2005.11.011

    Article  Google Scholar 

  347. Guillon D, Rivallant S, Barrau J-J et al (2008) Initiation and propagation mechanisms of progressive crushing in carbon-epoxy laminated plates. In: ECCM-13, Stockholm, Sweden

  348. Israr HA, Rivallant S, Barrau J-J (2013) Experimental investigation on mean crushing stress characterization of carbon–epoxy plies under compressive crushing mode. Compos Struct 96:357–364

    Article  Google Scholar 

  349. Israr HA, Rivallant S, Bouvet C, Barrau J-J (2014) Finite element simulation of 0°/90° CFRP laminated plates subjected to crushing using a free-face-crushing concept. Compos Part A Appl Sci Manuf 62:16–25

    Article  Google Scholar 

  350. Israr HA, Rivallant S, Zeng H, Barrau J-J (2011) Finite element modelling of CFRP plates under crushing. In: Proceedings of the 18th international conference on composite materials

  351. Israr HA, Rivallant S, Barrau JJ (2012) Numerical modeling of [0/90] CFRP laminated plates under low velocity crushing. In: Proceedings of the 8th Asian-Australasian conference on composite materials (ACCM-8)

  352. Joosten MW, Dutton S, Kelly D, Thomson R (2011) Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element. Compos Struct 93:682–689. doi:10.1016/j.compstruct.2010.08.011

    Article  Google Scholar 

  353. David M, Johnson AF, Voggenreiter H (2013) Analysis of crushing response of composite crashworthy structures. Appl Compos Mater 20:773–787. doi:10.1007/s10443-012-9301-8

    Article  ADS  Google Scholar 

  354. David M, Johnson AF (2015) Effect of strain rate on the failure mechanisms and energy absorption in polymer composite elements under axial loading. Compos Struct 122:430–439. doi:10.1016/j.compstruct.2014.11.010

    Article  Google Scholar 

  355. Pickett AK, Lamb AJ, Chaudoye F (2009) Materials characterisation and crash modelling of composite-aluminium honeycomb sandwich material. Int J Crashworthiness 14:1–15. doi:10.1080/13588260802293194

    Article  Google Scholar 

  356. Caputo F, De Luca A, Lamanna G et al (2014) Numerical study for the structural analysis of composite laminates subjected to low velocity impact. Compos Part B Eng 67:296–302

    Article  Google Scholar 

  357. Caputo F, De Luca A, Lamanna G et al (2015) Numerical investigation of onset and evolution of LVI damages in carbon-epoxy plates. Compos Part B Eng 68:385–391

    Article  Google Scholar 

  358. Nakatani H, Kosaka T, Osaka K, Sawada Y (2011) Facesheet effects on the low velocity impact damages in titanium/GFRP hybrid laminates. In: 18th international conference on composite materials, Jeju Island, Korea

  359. Guo W, Xue P, Yang J (2013) Nonlinear progressive damage model for composite laminates used for low-velocity impact. Appl Math Mech 34:1145–1154

    Article  MathSciNet  Google Scholar 

  360. Lopes CS, Camanho PP, Gürdal Z et al (2009) Low-velocity impact damage on dispersed stacking sequence laminates. Part II: numerical simulations. Compos Sci Technol 69:937–947

    Article  Google Scholar 

  361. Dang TD, Hallett SR (2013) A numerical study on impact and compression after impact behaviour of variable angle tow laminates. Compos Struct 96:194–206

    Article  Google Scholar 

  362. Abdulhamid H, Bouvet C, Michel L et al (2014) Investigation of impact damage of tapered composite laminates. In: 16th European conference on composite materials (ECCM16), Seville, Spain

  363. Riccio A, Di Felice G, LaManna G et al (2014) A global–local numerical model for the prediction of impact induced damage in composite laminates. Appl Compos Mater 21:457–466

    Article  ADS  Google Scholar 

  364. Perillo G, Grytten F, Sørbø S, Delhaye V (2015) Numerical/experimental impact events on filament wound composite pressure vessel. Compos Part B Eng 69:406–417

    Article  Google Scholar 

  365. Dang TD, Hallet SR, Kim BC et al (2014) Modelling of as manufactured geometry for prediction of impact and compression after impact behaviour of variable angle tow laminates. J Compos Mater 0021998314534707

  366. Fanteria D, Longo G, Panettieri E (2014) A non-linear shear damage model to reproduce permanent indentation caused by impacts in composite laminates. Compos Struct 111:111–121. doi:10.1016/j.compstruct.2013.12.017

    Article  Google Scholar 

  367. Perillo G, Vedivik NP, Echtermeyer AT (2014) Numerical and experimental investigation of impact on filament wound glass reinforced epoxy pipe. J Compos Mater 0021998314525485

  368. Zhang J, Zhang X (2015) An efficient approach for predicting low-velocity impact force and damage in composite laminates. Compos Struct. doi:10.1016/j.compstruct.2015.04.023

    Google Scholar 

  369. Ullah H, Silberschmidt VV (2014) Numerical analysis of the interactive damage mechanisms in two-dimensional carbon fabric-reinforced thermoplastic composites under low velocity impacts. J Compos Mater 0021998314560383

  370. Hongkarnjanakul N, Bouvet C, Rivallant S (2013) Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure. Compos Struct. doi:10.1016/j.compstruct.2013.07.008

    Google Scholar 

  371. Pham DC, Narayanaswamy S (2015) An effective modeling strategy for drop test analysis of composite curved beam. In: 56th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Kissimmee, Florida

  372. Feng Y, Siegmund T, Habtour E, Riddick J (2015) Impact mechanics of topologically interlocked material assemblies. Int J Impact Eng 75:140–149

    Article  Google Scholar 

  373. Muñoz R, Martínez-Hergueta F, Gálvez F et al (2015) Ballistic performance of hybrid 3D woven composites: experiments and simulations. Compos Struct 127:141–151. doi:10.1016/j.compstruct.2015.03.021

    Article  Google Scholar 

  374. Moreno MS, Cela JL, Vicente JM, Vecino JG (2014) Adhesively bonded joints as a dissipative energy mechanism under impact loading. Appl Math Model. doi:10.1016/j.apm.2014.11.052

    Google Scholar 

  375. Manoharan MG, Sun CT (1990) Strain energy release rates of an interfacial crack between two anisotropic solids under uniform axial strain. Compos Sci Technol 39:99–116. doi:10.1016/0266-3538(90)90049-B

    Article  Google Scholar 

  376. López-Puente J, Zaera R, Navarro C (2007) An analytical model for high velocity impacts on thin CFRPs woven laminated plates. Int J Solids Struct 44:2837–2851. doi:10.1016/j.ijsolstr.2006.08.022

    Article  MATH  Google Scholar 

  377. McGregor C, Vaziri R, Xiao X (2010) Finite element modelling of the progressive crushing of braided composite tubes under axial impact. Int J Impact Eng 37:662–672. doi:10.1016/j.ijimpeng.2009.09.005

    Article  Google Scholar 

  378. Xue P, Wang L, Qiao CF (2011) Crashworthiness Study on Fuselage Section and Struts under Cabin Floor. Int J Prot Struct 2:515–526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Ferrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrate, S., Ferrero, J.F. & Navarro, P. Cohesive zone models and impact damage predictions for composite structures. Meccanica 50, 2587–2620 (2015). https://doi.org/10.1007/s11012-015-0221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0221-1

Keywords

Navigation