Skip to main content
Log in

An asymptotic strain gradient Reissner-Mindlin plate model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper we derive a strain gradient plate model from the three-dimensional equations of strain gradient linearized elasticity. The deduction is based on the asymptotic analysis with respect of a small real parameter being the thickness of the elastic body we consider. The body is constituted by a second gradient isotropic linearly elastic material. The obtained model is recognized as a strain gradient Reissner-Mindlin plate model. We also provide a mathematical justification of the obtained plate model by means of a variational weak convergence result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aganović I, Tambača J, Tutek Z (2006) Derivation and justification of the models of rods and plates from l inearized three-dimensional micropolar elasticity. J Elast 84:131–152

    Article  MATH  Google Scholar 

  2. Aganović I, Tambača J, Tutek Z (2007) Derivation and justification of the model of micropolar elastic shells from three-dimensional linearized micropolar elasticity. Asymptot Anal 51:335–361

    MathSciNet  MATH  Google Scholar 

  3. Aifantis E (1999) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  4. Askes H, Aifaintis E (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementation and new results. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  5. Ciarlet PG (1997) Mathematical elasticity, vol. II: Theory of plates. North-Holland, Amsterdam

    Google Scholar 

  6. dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C R Acad Sci Paris 321:303–308

    MATH  Google Scholar 

  7. dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32:33–52

    Article  MathSciNet  MATH  Google Scholar 

  8. dell’Isola F, Sciarra G, Vidoli S (2009) Generalized Hooke’s law second gradient materials. Proc R Soc A 465:2177–2196

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”. Z Angew Math Phys 63:1119–1141

    Article  MathSciNet  MATH  Google Scholar 

  10. Erbay HA (2000) An asymptotic theory of thin micropolar plates. Int J Eng Sci 38:1497–1516

    Article  MathSciNet  MATH  Google Scholar 

  11. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    Article  ADS  MATH  Google Scholar 

  12. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  13. Germain P (1973) La méthode des puissances virtuelles en mécanique des milieux continus. I. Théorie du second gradient. J Méc 12:235–274

    MathSciNet  MATH  Google Scholar 

  14. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  ADS  MATH  Google Scholar 

  15. Lazopoulos KA (2004) On the gradient strain elasticity theory of plates. Eur J Mech A, Solids 23:843–852

    Article  MathSciNet  MATH  Google Scholar 

  16. Lazopoulos KA (2009) On bending of strain gradient elastic micro-plates. Mech Res Commun 36:777–783

    Article  MathSciNet  MATH  Google Scholar 

  17. Lazopoulos KA, Lazopoulos AK (2011) Nonlinear strain gradient elastic thin shallow shells. Eur J Mech A, Solids 30:286–292

    Article  Google Scholar 

  18. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantiliver sensors. J Micromech Microeng 15(5):1060–1067

    Article  Google Scholar 

  19. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  20. Nardinocchi P, Podio-Guidugli P (1994) The equations of Reissner-Mindlin plates obtained by the method of the internal constraints. Meccanica 29:143–157

    Article  MATH  Google Scholar 

  21. Neff P, Chełmiński K (2007) A geometrically exact Cosserat shell model for defective elastic crystals. Justification via Γ-convergence. Interfaces Free Bound 9:455–492

    Article  MathSciNet  MATH  Google Scholar 

  22. Neff P, Hong K-I, Jeong J (2010) The Reissner-Mindlin plate is the Γ-limit of Cosserat elasticity. Math Models Methods Appl Sci 20:1553–1590

    Article  MathSciNet  MATH  Google Scholar 

  23. Paroni R, Podio-Guidugli P, Tomassetti G (2006) The Reissner-Mindlin plate theory via Γ-convergence. C R Acad Sci Paris, Ser I 343:437–440

    Article  MathSciNet  MATH  Google Scholar 

  24. Paroni R, Podio-Guidugli P, Tomassetti G (2007) A justification of the Reissner-Mindlin plate theory through variational convergence. Anal Appl 5:165–182

    Article  MathSciNet  MATH  Google Scholar 

  25. Ramezani S (2012) A shear deformation micro-plate model based on a most general form of strain gradient elasticity. Int J Mech Sci 57:34–42

    Article  Google Scholar 

  26. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Serpilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpilli, M., Krasucki, F. & Geymonat, G. An asymptotic strain gradient Reissner-Mindlin plate model. Meccanica 48, 2007–2018 (2013). https://doi.org/10.1007/s11012-013-9719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9719-6

Keywords

Navigation