Skip to main content

Advertisement

Log in

Targeting inflammation: a potential approach for the treatment of depression

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Major depressive disorder (MDD) or Depression is one of the serious neuropsychiatric disorders affecting over 280 million people worldwide. It is 4th important cause of disability, poor quality of life, and economic burden. Women are more affected with the depression as compared to men and severe depression can lead to suicide. Most of the antidepressants predominantly work through the modulation on the availability of monoaminergic neurotransmitter (NTs) levels in the synapse. Current antidepressants have limited efficacy and tolerability. Moreover, treatment resistant depression (TRD) is one of the main causes for failure of standard marketed antidepressants. Recently, inflammation has also emerged as a crucial factor in pathological progression of depression. Proinflammatory cytokine levels are increased in depressive patients. Antidepressant treatment may attenuate depression via modulation of pathways of inflammation, transformation in structure of brain, and synaptic plasticity. Hence, targeting inflammation may be emerged as an effective approach for the treatment of depression. The present review article will focus on the preclinical and clinical studies that targets inflammation. In addition, it also concentrates on the therapeutic approaches’ that targets depression via influence on the inflammatory signaling pathways.

Graphical abstract

Graphical abstract demonstrate the role of various factors in the progression and neuroinflammation, oxidative stress. It also exhibits the association of neuroinflammation, oxidative stress with depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S (2012) Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord 141(2–3):308–314

    Article  CAS  Google Scholar 

  • Al-Baz N, Karim MA (2020) Rheumatoid Arthritis, Depression, and the Role of Celecoxib. SN Compr Clin Med 2:1848–1852

    Article  CAS  Google Scholar 

  • Albert PR (2015) Why is depression more prevalent in women? J Psychiatry Neurosci 40(4):219-21

  • Aleksandrova LR, Phillips AG, Wang YT (2017) Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci 42:222–229

    Article  Google Scholar 

  • Almarhoon FH, Almubarak KA, Alramdhan ZA (2021) The Association Between Depression and Obesity Among Adults in the Eastern Province, Saudi Arabia. Cureus 13(10):e18794

    Google Scholar 

  • Appleton J (2018) The gut-brain axis: influence of microbiota on mood and mental health. Integr Med (Encinitas) 17(4):28–32

    Google Scholar 

  • Arteaga-Henríquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, Birkenhager TK, Musil R, Müller N, Drexhage HA (2019) Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium. Front Psychiatry 10:458

    Article  Google Scholar 

  • Ayano G, Agidew M, Duko B, Mulat H, Alemayew M (2015) Perception, attitude and associated factors on schizophrenia and depression among residents of Hawassa City, South Ethiopia, cross sectional study. Am J Psychiatry Neurosci 3(6):116–124

    Article  Google Scholar 

  • Bădescu SV, Tătaru C, Kobylinska L, Georgescu EL, Zahiu DM, Zăgrean AM, Zăgrean L (2016) The association between Diabetes Mellitus and depression. J Med Life 9(2):120–125

    Google Scholar 

  • Badimon L, Padró T, Vilahur G (2012) Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care 1(1):60–74

    Article  Google Scholar 

  • Bakunina N et al (2015) Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 144(3):365–373

    Article  CAS  Google Scholar 

  • Ball K, Burton NW, Brown WJ (2009) A prospective study of overweight, physical activity, and depressive symptoms in young women. Obes (Silver Spring) 17(1):66–71

    Article  Google Scholar 

  • Baumeister D, Ciufolini S, Mondelli V (2016) Effects of psychotropic drugs on inflammation: consequence or mediator of therapeutic effects in psychiatric treatment? Psychopharmacology 233(9):1575–1589

    Article  CAS  Google Scholar 

  • Bayramgürler D, Karson A, Ozer C, Utkan T (2013) Effects of long-term etanercept treatment on anxiety- and depression-like neurobehaviors in rats. Physiol Behav 119:145–148

    Article  Google Scholar 

  • Belleau EL, Treadway MT, Pizzagalli DA (2019) The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry Elsevier USA 85:443–453

    Article  Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    Article  CAS  Google Scholar 

  • Berk M, Woods RL, Nelson MR et al (2020) Effect of aspirin vs placebo on the prevention of depression in older people: a randomized clinical trial. JAMA Psychiat 77(10):1012–1020

    Article  Google Scholar 

  • Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25:1270–1276

    Article  CAS  Google Scholar 

  • Bhatt S, Mahesh R, Devadoss T, Jindal A (2017a) Neuropharmacological evaluation of a novel 5-HT3 receptor antagonist (4-benzylpiperazin-1-yl)(3-methoxyquinoxalin-2-yl) methanone (6 g) on lipopolysaccharide-induced anxiety models in mice. J Basic Clin Physiol Pharmacol 28:101–106

    Article  CAS  Google Scholar 

  • Bhatt S, Mahesh R, Jindal A, Devadoss T (2017b) Neuropharmacological and neurochemical evaluation of N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n): a novel serotonergic 5-HT3 receptor antagonist for co-morbid antidepressant- and anxiolytic-like potential using traumatic brain injury model in rats. J Basic Clin Physiol Pharmacol 28:93–100

    Article  CAS  Google Scholar 

  • Bhatt S, Mahesh R, Jindal A, Devadoss T (2014) Protective effects of a novel 5-HT3 receptor antagonist, N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) against chronic unpredictable mild stress-induced behavioral changes and biochemical alterations. Pharmacol Biochem Behav 122:234–239

    Article  CAS  Google Scholar 

  • Bhatt S, Shukla P, Raval J, Goswami S (2016) Role of aspirin and dexamethasone against experimentally induced depression in rats. Basic Clin Pharmacol Toxicol 119(1):10–18

    Article  CAS  Google Scholar 

  • Blumberger DM, Hsu JH, Daskalakis ZJ (2015) A review of brain stimulation treatments for late-life depression. Curr Treat Options Psych 2:413–421

    Article  Google Scholar 

  • Boku S, Nakagawa S, Toda H, Hishimoto A (2018) Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 72:3–12

    Article  CAS  Google Scholar 

  • Bremner JD (2006) Traumatic stress: effects on the brain. Dialogues Clin Neurosci 8(4):445–461

    Article  Google Scholar 

  • Brymer KJ, Fenton EY, Kalynchuk LE, Caruncho HJ (2018) Peripheral etanercept administration normalizes behavior, hippocampal neurogenesis, and hippocampal reelin and GABAA receptor expression in a preclinical model of depression. Front Pharmacol 9:121

    Article  Google Scholar 

  • Buga AM, Ciobanu O, Bădescu GM, Bogdan C, Weston R, Slevin M, Di Napoli M, Popa-Wagner A (2016) Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients. Oncotarget 7(14):17415–17430

    Article  Google Scholar 

  • Carvalho LA, Torre JP, Papadopoulos AS, Poon L, Juruena MF, Markopoulou K et al (2013) Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J Affect Disord 148(1):136–140

    Article  CAS  Google Scholar 

  • Coogan AN, Baird AL, Popa-Wagner A, Thome J (2016) Circadian rhythms and attention deficit hyperactivity disorder: The what, the when and the why. Prog Neuropsychopharmacol Biol Psychiatry 67:74–81

    Article  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  Google Scholar 

  • Darwish L, Beroncal E, Sison MV, Swardfager W (2018) Depression in people with type 2 diabetes: current perspectives. Diabetes Metab Syndr Obes 11:333–343. https://doi.org/10.2147/DMSO.S106797

    Article  Google Scholar 

  • Dinis-Oliveira RJ (2017) Metabolism and metabolomics of ketamine: a toxicological approach. Forensic Sci Res 2(1):2–10

    Article  Google Scholar 

  • de Ridder L, Benninga MA, Taminiau JAJM, Hommes DW, van Deventer SJH (2007) Infliximab use in children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 45(1):3–14

    Article  Google Scholar 

  • Doyle TA, de Groot M, Harris T, Schwartz F, Strotmeyer ES, Johnson KC, Kanaya A (2013) Diabetes, depressive symptoms, and inflammation in older adults: results from the Health, Aging, and Body Composition Study. J Psychosom Res 75(5):419–424

    Article  Google Scholar 

  • Driessen E, Hollon SD (2010) Cognitive behavioral therapy for mood disorders: efficacy, moderators and mediators. Psychiatr Clin North Am 33(3):537–555

    Article  Google Scholar 

  • Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y (2017) Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 13(4):851–863

    Article  CAS  Google Scholar 

  • Ersozlu Bozkirli E, Keskek S, Bozkirli E et al (2014) AB0658 The effects of infliximab treatment on depression, anxiety and sleep disorders in patients with ankylosing spondylitis. Ann Rheum Dis 73:1022–1023

    Article  Google Scholar 

  • Eser D, Schule C, Baghai TC (2006) Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology 84:244–254

    Article  CAS  Google Scholar 

  • Flory JD, Yehuda R (2015) Comorbidity between post-traumatic stress disorder and major depressive disorder: alternative explanations and treatment considerations. Dialogues Clin Neurosci 17(2):141–150

    Article  Google Scholar 

  • Fourrier C, Sampson E, Mills NT et al (2018) Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials 19:447

    Article  Google Scholar 

  • Frodl TS, Koutsouleris N, Bottlender R (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65:1156–1165

    Article  Google Scholar 

  • Gamble-George JC (2016) Cyclooxygenase-2 inhibition reduces stress-induced affective pathology. Elife 5:e14137

    Article  Google Scholar 

  • Germain A, Kupfer DJ (2008) Circadian rhythm disturbances in depression. Hum Psychopharmacol 23(7):571–585

    Article  Google Scholar 

  • Glavan D, Gheorman V, Gresita A (2021) Identification of transcriptome alterations in the prefrontal cortex, hippocampus, amygdala and hippocampus of suicide victims. Sci Rep 11:18853

    Article  CAS  Google Scholar 

  • Günaydın Ş, Yılmaz A (2015) Improvement of solubility of celecoxib by inclusion in MCM-41 mesoporous silica: drug loading and release. Turk J Chem 39(2). https://doi.org/10.3906/kim-1409-56

  • Gustafsson D, Klang A, Thams S, Rostami E (2021) The role of BDNF in experimental and clinical traumatic brain injury. Int J Mol Sci 22(7):3582

    Article  CAS  Google Scholar 

  • Halaris A, Cantos A, Johnson K, Hakimi M, Sinacore J (2020) Modulation of the inflammatory response benefits treatment-resistant bipolar depression: A randomized clinical trial. J Affect Disord 261:145–152

    Article  CAS  Google Scholar 

  • Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 6:278–296

    Article  CAS  Google Scholar 

  • Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacol 36:2452–2459

    Article  CAS  Google Scholar 

  • Harvey PD, Twamley EW, Pinkham AE, Depp CA, Patterson TL (2017) Depression in schizophrenia: associations with cognition, functional capacity, everyday functioning, and self-assessment. Schizophr Bull 43(3):575–582

    Google Scholar 

  • Hasler G, Fromm S, Alvarez RP (2007a) Cerebral blood flow in immediate and sustained anxiety. J Neurosci 27:6313–6319

    Article  CAS  Google Scholar 

  • Hasler G, van der Veen JW, Tumonis T (2007b) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64:193–200

    Article  CAS  Google Scholar 

  • Hashioka S, McGeer PL, Monji A, Kanba S (2009) Anti-inflammatory effects of antidepressants: possibilities for preventives against Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 9(1):12–19

    Article  CAS  Google Scholar 

  • Hoffmann W, Förster W (1987) Two years follow-up Cottbus reinfarction study with 30 and 60 mg acetylsalicylic acid. Prog Clin Biol Res 242:393–397

    CAS  Google Scholar 

  • Husain MI, Cullen C, Umer M, Carvalho AF, Kloiber S, Meyer JH, Ortiz A, Knyahnytska Y, Husain MO, Giddens J, Diniz BS, Wang W, Young AH, Mulsant BH, Daskalakis ZJ (2020) Minocycline as adjunctive treatment for treatment-resistant depression: study protocol for a double blind, placebo-controlled, randomized trial (MINDEP2). BMC Psychiatry 20:173

    Article  Google Scholar 

  • Jindal A, Mahesh R, Bhatt S (2015) Etazolate, a phosphodiesterase-4 enzyme inhibitor produces antidepressant-like effects by blocking the behavioral, biochemical, neurobiological deficits and histological abnormalities in hippocampus region caused by olfactory bulbectomy. Psychopharmacology 232:623–637

    Article  CAS  Google Scholar 

  • Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20(23):6008

    Article  CAS  Google Scholar 

  • Kendell SF, Krystal JH, Sanacora G (2005) GABA and glutamate systems as therapeutic targets in depression and mood disorders. Expert Opin Ther Targets 9:153–168

    Article  CAS  Google Scholar 

  • Kendler KS, Gardner CO, Prescott CA (2006) Toward a comprehensive developmental model for major depression in men. Am J Psychiatry 163:115–124

    Article  Google Scholar 

  • Kendler KS, Gardner CO, Prescott CA (2002) Toward a comprehensive developmental model for major depression in women. Am J Psychiatry 159:1133–1145

    Article  Google Scholar 

  • Kendler KS, Thornton LM, Prescott CA (2001) Gender differences in the rates of exposure to stressful life events and sensitivity to their depressogenic effects. Am J Psychiatry 158:587–593

    Article  CAS  Google Scholar 

  • Kenneth N, Agwuh A, MacGowan (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58(2):256–265

    Article  Google Scholar 

  • Kessler RC, Nelson CB, McGonagle KA (1996) Comorbidity of DSM-III-R major depressive disorder in the general population: results from the US National Comorbidity Survey. Br J Psychiatry 168(30):17–30

    Article  Google Scholar 

  • Kessler RC, Sampson NA, Berglund P (2015) Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiol Psychiatr Sci 24:210–226

    Article  CAS  Google Scholar 

  • Kohler O, Benros ME, Nordentoft M et al (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiat 71(12):1381–1391

    Article  Google Scholar 

  • Kopschina Feltes P et al (2017) Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol (Oxford England) 31(9):1149–1165

    Article  CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 55:894–902

    Article  Google Scholar 

  • Kupfer DJ (2005) The pharmacological management of depression. Dialog Clin Neurosci 7(3):191–205

    Article  Google Scholar 

  • Kurhe Y, Mahesh R, Gupta D (2014) Effect of a selective cyclooxygenase type 2 inhibitor celecoxib on depression associated with obesity in mice: an approach using behavioral tests. Neurochem Res 39(7):1395–1402

    Article  CAS  Google Scholar 

  • Kuria MW, Ndetei DM, Obot IS, Khasakhala LI, Bagaka BM, Mbugua MN, Kamau J (2012) The Association between Alcohol Dependence and Depression before and after Treatment for Alcohol Dependence. ISRN Psychiatry 2012:482802

  • Lachininoto MG, Nuzzolo ER, Bonanno G, Mariotti A, Procoli A, Locatelli F, De Cristofaro R, Rutella S (2013) Cyclooxygenase-2 (COX-2) inhibition constrains indoleamine 2,3-dioxygenase 1 (IDO1) activity in acute myeloid leukaemia cells. Molecules 18(9):10132–10145

    Article  Google Scholar 

  • Lam RW, Kennedy SH, Mclntyre RS, Khullar A (2014) Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry 59(12):649–654

    Article  Google Scholar 

  • Laudon M, Frydman-Marom A (2014) Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders. Int J Mol Sci 15(9):15924–15950

    Article  Google Scholar 

  • Lee CH, Giuliani F (2019) The role of inflammation in depression and fatigue. Front Immunol 10:1696

    Article  CAS  Google Scholar 

  • Li CT, Bai YM, Tu PC, Lee YC, Huang YL, Chen TJ, Chang WH, Su TP (2012) Major depressive disorder and stroke risks: a 9-year follow-up population-based, matched cohort study. PLoS ONE 7(10):e46818

    Article  CAS  Google Scholar 

  • Li G, Thorn CF, Bertagnolli MM, Grosser T, Altman RB, Klein TE (2012) Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 22(4):310–318

    Article  Google Scholar 

  • Li J-P, Guo J-M, Shang E-X, Zhu Z-H, Liu Y, Zhao B-C, Zhao J, Tang Z-S, Duan J-A (2017) Quantitative determination of five metabolites of aspirin by UHPLC–MS/MS coupled with enzymatic reaction and its application to evaluate the effects of aspirin dosage on the metabolic profile. J Pharm Biomed Anal 138:109–117

    Article  CAS  Google Scholar 

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772

    Article  CAS  Google Scholar 

  • Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CA Jr (2017) Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 81(10):886–897

    Article  CAS  Google Scholar 

  • Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40:171–176

    Article  CAS  Google Scholar 

  • Maciel IS, Silva RB, Morrone FB, Calixto JB, Campos MM (2013) Synergistic effects of celecoxib and bupropion in a model of chronic inflammation-related depression in mice. PLoS ONE 8:e77227

    Article  CAS  Google Scholar 

  • Mannan M, Mamun A, Doi S, Clavarino A (2016) Is there a bi-directional relationship between depression and obesity among adult men and women? Systematic review and bias-adjusted meta analysis. Asian J Psychiatr 21:51–66

    Article  Google Scholar 

  • Martinez JM, Garakani A, Yehuda R, Gorman JM (2012) Proinflammatory and “resiliency” proteins in the CSF of patients with major depression. Depress Anxiety 29:32–38

    Article  CAS  Google Scholar 

  • Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, Dursun SM (2020) Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol 10:2045125320916657

    Article  CAS  Google Scholar 

  • McDonnell CW, Dunphy-Doherty F, Rouine J, Bianchi M, Upton N, Sokolowska E, Prenderville JA (2021) The antidepressant-like effects of a clinically relevant dose of ketamine are accompanied by biphasic alterations in working memory in the wistar kyoto rat model of depression. Front Psychiatry 11:599588

    Article  Google Scholar 

  • McEwen BS, Nasca C, Gray JD (2016) Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41(1):3–23

    Article  CAS  Google Scholar 

  • Menke A (2019) Is the HPA axis as target for depression outdated, or is there a new hope? Front Psychiatry 10:101

    Article  Google Scholar 

  • Michel TM et al (2004) Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J Neural Transmission 111:1191–1201

    Article  CAS  Google Scholar 

  • Michel TM et al (2007) Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder - a post-mortem study. Psychiatry Res 151:145–150

    Article  CAS  Google Scholar 

  • Michel TM et al (2010) Increased xanthine oxidase in the thalamus and putamen in depression. World J Biol Psychiatry 11:314–320

    Article  Google Scholar 

  • Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306

    Article  CAS  Google Scholar 

  • Miller GE, Rohleder N, Stetler C, Kirschbaum C (2005) Clinical depression and regulation of the inflammatory response during acute stress. Psychosom Med 67:679–687

    Article  CAS  Google Scholar 

  • Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings. CNS Neurosci Ther 19(6):370–380

    Article  CAS  Google Scholar 

  • Molta ChT (2007). In: Boehncke HH, Radeke WH (eds) Biologics in general medicine. Springer-Verlag Berlin, Heidelberg, pp 32–40

    Chapter  Google Scholar 

  • Moulton CD, Pickup JC (2018) Innate immunity and inflammation in type 2 diabetes-associated depression. In: Khalida Ismail and others (eds), Depression and Type 2 Diabetes (Oxford, ; online edn, Oxford Academic, 1 Sept. 2018), https://doi.org/10.1093/med/9780198789284.003.0005. Accessed 30 Aug 2022

  • Muller HHO, Moeller S, Lücke C, Lam AP, Braun N, Philipsen A (2018) Vagus Nerve Stimulation (VNS) and other augmentation strategies for Therapy-Resistant Depression (TRD): review of the evidence and clinical advice for use. Front Neurosci 12:239

    Article  Google Scholar 

  • Müller N (2019) COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders. Front Psychiatry 10:375

    Article  Google Scholar 

  • Nahar IK, Shojania K, Marra CA, Alamgir AH, Anis AH (2003) Infliximab treatment of rheumatoid arthritis and Crohn’s disease. Ann Pharmacother 37(9):1256–1265

    Article  CAS  Google Scholar 

  • Nerurkar L, Siebert S, McInnes IB, Cavanagh J (2019) Rheumatoid arthritis and depression: an inflammatory perspective. Lancet Psychiatry, Elsevier Ltd 6:164–173

  • Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, Ho RC (2018) IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep 8(1):12050

    Article  Google Scholar 

  • Nguyen MM, Perlman G, Kim N, Wu CY, Daher V, Zhou A, Mathers EH, Anita NZ, Lanctôt KL, Herrmann N, Pakosh M, Swardfager W (2021) Depression in type 2 diabetes: A systematic review and meta-analysis of blood inflammatory markers. Psychoneuroendocrinology 134:105448

    Article  CAS  Google Scholar 

  • Nishino S, Ueno R, Ohishi K, Sakai T, Hayaishi O (1989) Salivary prostaglandin concentrations: possible state indicators for major depression. Am J Psychiatry 146:365–368

    Article  CAS  Google Scholar 

  • O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522

    Article  Google Scholar 

  • Ohgi Y, Futamura T, Kikuchi T, Hashimoto K (2013) Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 103(4):853–859

    Article  CAS  Google Scholar 

  • Ohishi K, Ueno R, Nishino S, Sakai T, Hayaishi O (1988) Increased level of salivary prostaglandins in patients with major depression. Biol Psychiatry 23:326–334

    Article  CAS  Google Scholar 

  • Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD (2020) Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun 87:901–909

    Article  CAS  Google Scholar 

  • Pace TW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, Heim CM (2006) Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry 163:1630–1633

    Article  Google Scholar 

  • Pae CU, Marks DM, Han C, Patkar AA (2008) Does minocycline have antidepressant effect? Biomed Pharmacother 62(5):308–311

    Article  CAS  Google Scholar 

  • Patrick DM, Van Beusecum JP, Kirabo A (2021) The role of inflammation in hypertension: novel concepts. Curr Opin Physiol 19:92–98

    Article  CAS  Google Scholar 

  • Phillips C (2017) Brain-derived neurotrophic factor, depression, and physical activity: making the neuroplastic connection. Neural Plast 2017:7260130

  • Pompili M, Serafini G, Innamorati M, Dominici G, Ferracuti S, Kotzalidis GD, Serra G, Girardi P, Janiri L, Tatarelli R, Sher L, Lester D (2010) Suicidal behavior and alcohol abuse. Int J Environ Res Public Health 7(4):1392–1431

    Article  Google Scholar 

  • Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiat 70(1):31–41

    Article  CAS  Google Scholar 

  • Sacre S, Jaxa-Chamiec A, Low CMR, Chamberlain G, Tralau-Stewart C (2019) Structural modification of the antidepressant mianserin suggests that its anti-inflammatory activity may be independent of 5-hydroxytryptamine receptors. Front Immunol 10:1167

    Article  CAS  Google Scholar 

  • Sandu RE, Buga AM, Uzoni A, Petcu EB, Popa-Wagner A (2015) Neuroinflammation and comorbidities are frequently ignored factors in CNS pathology. Neural Regen Res 10(9):1349–1355

    Article  CAS  Google Scholar 

  • Sandu RE, Dumbrava D, Surugiu R, Glavan DG, Gresita A, Petcu EB (2017) Cellular and molecular mechanisms underlying non-pharmaceutical ischemic stroke therapy in aged subjects. Int J Mol Sci 19(1):99

    Article  Google Scholar 

  • Santiago RM, Barbiero J, Martynhak BJ, Boschen SL, da Silva LM, Werner MF, Da Cunha C, Andreatini R, Lima MM, Vital MA (2014) Antidepressant-like effect of celecoxib piroxicam in rat models of depression. J Neural Transm (Vienna) 121:671–682

    CAS  Google Scholar 

  • Schmidtner AK, Slattery DA, Gläsner J et al (2019) Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry 9:223

    Article  Google Scholar 

  • Sethi R et al (2019) Neurobiology and therapeutic potential of Cyclooxygenase-2 (COX-2) inhibitors for inflammation in neuropsychiatric disorders. Front Psychiatry 10:605

    Article  Google Scholar 

  • Shadrina M, Bondarenko EA, Slominsky PA (2018) Genetics factors in major depression disease. Front Psychiatry 9:334

    Article  Google Scholar 

  • Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    Article  Google Scholar 

  • Sima AV, Stancu CS, Simionescu M (2009) Vascular endothelium in atherosclerosis. Cell Tissue Res 335:191–203

    Article  CAS  Google Scholar 

  • Solak Y, Afsar B, Vaziri N (2016) Hypertension as an autoimmune and inflammatory disease. Hypertens Res 39:567–573

    Article  CAS  Google Scholar 

  • Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157:1552–1562

    Article  CAS  Google Scholar 

  • Thillard EM, Gautier S, Babykina E, Carton L, Amad A, Bouzillé G, Beuscart JB, Ficheur G, Chazard E (2020) Psychiatric adverse events associated with infliximab: a cohort study from the french nationwide discharge abstract database. Front Pharmacol 11:513

    Article  CAS  Google Scholar 

  • Tolentino JC, Schmidt SL (2018) DSM-5 criteria and depression severity: implications for clinical practice. Front Psychiatry 9:450

    Article  Google Scholar 

  • Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, Lalla D, Woolley M, Jahreis A, Zitnik R, Cella D, Krishnan R (2006) Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367(9504):29–35

    Article  CAS  Google Scholar 

  • Uphoff E, Pires M, Barbui C, Barua D, Churchill R, Cristofalo D, Ekers D, Fottrell E, Mazumdar P, Purgato M, Rana R, Wright J, Siddiqi N (2020) Behavioural activation therapy for depression in adults with non-communicable diseases. Cochrane Database Syst Rev 8(8):CD013461

    Google Scholar 

  • Vindbjerg E, Makransky G, Mortensen EL, Carlsson J (2019) Cross-cultural psychometric properties of the hamilton depression rating scale. Can J Psychiatry 64:39–46

    Article  Google Scholar 

  • Wang WY, Tan MS, Yu JT, Tan L (2015a) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3(10):136

    Google Scholar 

  • Wang N, Yu HY, Shen XF, Gao ZQ, Yang C, Yang JJ, Zhang GF (2015b) The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus. Ups J Med Sci 120(4):241–248

    Article  Google Scholar 

  • Wang XL, Li L (2021) Circadian clock regulates inflammation and the development of neurodegeneration. Front Cell Infect Microbiol 11:696554

    Article  CAS  Google Scholar 

  • Wooff Y et al (2019) IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol 10:1618

    Article  CAS  Google Scholar 

  • Young EA (1998) Sex differences and the HPA axis: implications for psychiatric disease. J Gend Specif Med 1:21–27

    CAS  Google Scholar 

  • Zarghi A, Arfaei S (2011) Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res 10(4):655–683

    CAS  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  Google Scholar 

  • Zidar N, Odar K, Glavac D, Jerse M, Zupanc T, Stajer D (2009) Cyclooxygenase in normal human tissues–is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J Cell Mol Med 13(9B):3753–3763

    Article  Google Scholar 

  • Zuckerman H, Pan Z, Park C, Brietzke E, Musial N, Shariq AS, Iacobucci M, Yim SJ, Lui LMW, Rong C, McIntyre RS (2018) Recognition and treatment of cognitive dysfunction in major depressive disorder. Front Psychiatry 9:655

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shvetank Bhatt: Idea and preparation of manuscript.

Thangaraj Devadoss: Preparation of Chemistry part of the manuscript.

Niraj Kumar Jha: Figure preparation.

Moushumi Baidya: Literature review.

Gaurav Gupta: Literature Review.

Dinesh Kumar Chellappan: Editing and compilation.

Sachin Kumar Singh: Graphical Abstract preparation.

Kamal Dua: Idea and Editing.

Corresponding author

Correspondence to Shvetank Bhatt.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

On behalf of all co-authors, I Dr. Shvetank Bhatt giving consent to publish the work. 

Conflict of interest

There is no conflict of interest between the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, S., Devadoss, T., Jha, N.K. et al. Targeting inflammation: a potential approach for the treatment of depression. Metab Brain Dis 38, 45–59 (2023). https://doi.org/10.1007/s11011-022-01095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-01095-1

Keywords

Navigation