Skip to main content

Advertisement

Log in

Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer’s disease

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

During the last three decades, recombinant DNA technology has produced a wide range of hematopoietic and neurotrophic growth factors, including erythropoietin (EPO), which has emerged as a promising protein drug in the treatment of several diseases. Cumulative studies have recently indicated the neuroprotective role of EPO in preclinical models of acute and chronic neurodegenerative disorders, including Alzheimer’s disease (AD). AD is one of the most prevalent neurodegenerative illnesses in the elderly, characterized by the accumulation of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs), which serve as the disease’s two hallmarks. Unfortunately, AD lacks a successful treatment strategy due to its multifaceted and complex pathology. Various clinical studies, both in vitro and in vivo, have been conducted to identify the various mechanisms by which erythropoietin exerts its neuroprotective effects. The results of clinical trials in patients with AD are also promising. Herein, it is summarized and reviews all such studies demonstrating erythropoietin’s potential therapeutic benefits as a pleiotropic neuroprotective agent in the treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Al-Qahtani JM, Abdel-Wahab BA, Abd El-Aziz SM (2014) Long-term moderate dose exogenous erythropoietin treatment protects from intermittent hypoxia-induced spatial learning deficits and hippocampal oxidative stress in young rats. Neurochem Res 39(1):161–171

    Article  CAS  PubMed  Google Scholar 

  • Andoh T, Echigo N, Kamiya Y, Hayashi M, Kudoh I, Goto T (2011) Effects of erythropoietin on intracellular calcium concentration of rat primary cortical neurons. Brain Res 1387:8–18

    Article  CAS  PubMed  Google Scholar 

  • Andreucci M, Fuiano G, Presta P, Lucisano G, Leone F, Fuiano L, Bisesti V, Esposito P, Russo D, Memoli B, Faga T (2009) Downregulation of cell survival signalling pathways and increased cell damage in hydrogen peroxide-treated human renal proximal tubular cells by alpha-erythropoietin. Cell Prolif 42(4):554–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabpoor Z, Hamidi G, Rashidi B, Shabrang M, Alaei H, Sharifi MR, Salami M, Dolatabadi HR, Reisi P (2012) Erythropoietin improves neuronal proliferation in dentate gyrus of hippocampal formation in an animal model of Alzheimer's disease. Adv Biomed Res, vol 1

  • Arai K, Matsuki N, Ikegaya Y, Nishiyama N (2001) Deterioration of spatial learning performances in lipopolysaccharide-treated mice. Jpn J Pharmacol 87(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Armand-Ugón M, Aso E, Moreno J, Riera-Codina M, Sánchez A, Vegas E, Ferrer I (2015) Memory improvement in the AβPP/PS1 mouse model of familial Alzheimer's disease induced by carbamylated-erythropoietin is accompanied by modulation of synaptic genes. J Alzheimers Dis 45(2):407–421

    Article  PubMed  Google Scholar 

  • Avasarala JR, Konduru SS (2005) Recombinant erythropoietin down-regulates IL-6 and CXCR4 genes in TNF-α-treated primary cultures of human microvascular endothelial cells. J Mol Neurosci 25(2):183–189

    Article  CAS  PubMed  Google Scholar 

  • Bahia PK, Pugh V, Hoyland K, Hensley V, Rattray M, Williams RJ (2012) Neuroprotective effects of phenolic antioxidant tBHQ associate with inhibition of FoxO3a nuclear translocation and activity. J Neurochem 123(1):182–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey DM, Lundby C, Berg RM, Taudorf S, Rahmouni H, Gutowski M, Mulholland CW, Sullivan JL, Swenson ER, McEneny J, Young IS (2014) On the antioxidant properties of erythropoietin and its association with the oxidative–nitrosative stress response to hypoxia in humans. Acta Physiol 212(2):175–187

    Article  CAS  Google Scholar 

  • Bakker WJ, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer PJ, Löwenberg B, von Lindern M, van Dijk TB (2004) FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol 164(2):175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balan V, Miller GS, Kaplun L, Balan K, Chong ZZ, Li F, Kaplun A, VanBerkum MF, Arking R, Freeman DC, Maiese K (2008) Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem 283(41):27810–27819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, Vilchez JJ, Llamusi B, Artero R (2015) Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model. Dis Model Mech 8(7):679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barichello T, Simões LR, Generoso JS, Sangiogo G, Danielski LG, Florentino D, Dominguini D, Comim CM, Petronilho F, Quevedo J (2014) Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis. Transl Res 163(5):503–513

    Article  CAS  PubMed  Google Scholar 

  • Batmunkh C, Krajewski J, Jelkmann W, Hellwig-Bürgel T (2006) Erythropoietin production: molecular mechanisms of the antagonistic actions of cyclic adenosine monophosphate and interleukin-1. FEBS Lett 580(13):3153–3160

    Article  CAS  PubMed  Google Scholar 

  • Bayod S, Felice P, Andrés P, Rosa P, Camins A, Pallàs M, Canudas AM (2015) Downregulation of canonical Wnt signaling in hippocampus of SAMP8 mice. Neurobiol Aging 36(2):720–729

    Article  CAS  PubMed  Google Scholar 

  • Bendix I, Schulze C, Haefen CV, Gellhaus A, Endesfelder S, Heumann R, Felderhoff-Mueser U, Sifringer M (2012) Erythropoietin modulates autophagy signaling in the developing rat brain in an in vivo model of oxygen-toxicity. Int J Mol Sci 13(10):12939–12951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berschneider B, Ellwanger DC, Baarsma HA, Thiel C, Shimbori C, White ES, Kolb M, Neth P, Königshoff M (2014) miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis. Int J Biochem Cell Biol 53:432–441

    Article  CAS  PubMed  Google Scholar 

  • Boche D, Perry VH, Nicoll JA (2013) Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39(1):3–18

    Article  CAS  PubMed  Google Scholar 

  • Bouscary D, Pene F, Claessens YE, Muller O, Chrétien S, Fontenay-Roupie M, Gisselbrecht S, Mayeux P, Lacombe C (2003) Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood J Am Soc Hematol 101(9):3436–3443

    CAS  Google Scholar 

  • Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6(6):484–494

    Article  CAS  PubMed  Google Scholar 

  • Brines M, Cerami A (2008) Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med 264(5):405–432

    Article  CAS  PubMed  Google Scholar 

  • Brines ML, Ghezzi P, Keenan S, Agnello D, De Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci 97(19):10526–10531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brook I (2003) Microbiology and management of periodontal infections. Gen Dent 51(5):424–428

    PubMed  Google Scholar 

  • Bunn HF (2013) Erythropoietin. Cold Spring Harbor Perspect Med 3(3):a011619

    Article  Google Scholar 

  • Byts N, Samoylenko A, Fasshauer T, Ivanisevic M, Hennighausen L, Ehrenreich H, Sirén AL (2008) Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death Different 15(4):783–792

    Article  CAS  Google Scholar 

  • Cai Z, Li B, Li K, Zhao B (2012) Down-regulation of amyloid-β through AMPK activation by inhibitors of GSK-3β in SH-SY5Y and SH-SY5Y-AβPP695 cells. J Alzheimers Dis 29(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR (2006) Erythropoietin reduces Schwann cell TNF-α, Wallerian degeneration and pain-related behaviors after peripheral nerve injury. Eur J Neurosci 23(3):617–626

    Article  PubMed  Google Scholar 

  • Carbajo-Pescador S, Mauriz JL, Garcia-Palomo A, Gonzalez-Gallego J (2014) FoxO proteins: regulation and molecular targets in liver cancer. Curr Med Chem 21(10):1231–1246

    Article  CAS  PubMed  Google Scholar 

  • Castañeda-Arellano R, Feria-Velasco AI, Rivera-Cervantes MC (2014) Activity increase in EpoR and Epo expression by intranasal recombinant human erythropoietin (rhEpo) administration in ischemic hippocampi of adult rats. Neurosci Lett 583:16–20

    Article  PubMed  Google Scholar 

  • Castillo C, Fernández-Mendívil C, Buendia I, Saavedra P, Meza C, Parra NC, Lopez MG, Toledo JR, Fuentealba J (2019) Neuroprotective effects of EpoL against oxidative stress induced by soluble oligomers of Aβ peptide. Redox Biol 24:101187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celik M, Gokmen N, Erbayraktar S et al (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 99:2258–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cevik B, Solmaz V, Yigitturk G, Cavusoğlu T, Peker G, Erbas O (2017) Neuroprotective effects of erythropoietin on Alzheimer’s dementia model in rats. Adv Clin Exp Med 26(1):23–29

    Article  PubMed  Google Scholar 

  • Chamorro ME, Wenker SD, Vota DM, Vittori DC, Nesse AB (2013) Signaling pathways of cell proliferation are involved in the differential effect of erythropoietin and its carbamylated derivative. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1833(8):1960–1968

    Article  CAS  Google Scholar 

  • Chao MV, Lee FS (2004) Neurotrophin survival signaling mechanisms. J Alzheimers Dis 6(s6):S7–S11

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT (2007) Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 282(35):25875–25883

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Zhong Chong Z, Wang S, Maiese K (2013) Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 10(1):29–38

    Article  Google Scholar 

  • Chong ZZ, Maiese K (2007) The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 22(11):1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong ZZ, Kang JQ, Maiese K (2003) Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, bad, and caspase-mediated pathways. Br J Pharmacol 138(6):1107–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong ZZ, Li F, Maiese AK (2005) Activating Akt and the brain's resources to drive cellular survival and prevent inflammatory injury. Histol Histopathol 20(1):299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K (2010) Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. Oxidative Med Cell Longev 3(6):374–391

    Article  Google Scholar 

  • Chong ZZ, Shang YC, Wang S, Maiese K (2012) PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 7(9):e45456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu H, Ding H, Tang Y, Dong Q (2014) Erythropoietin protects against hemorrhagic blood–brain barrier disruption through the effects of aquaporin-4. Lab Investig 94(9):1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Cruz YR, Strehaiano M, Rodriguez Obaya T, Garcia Rodriguez JC, Maurice T (2017) An intranasal formulation of erythropoietin (Neuro-EPO) prevents memory deficits and amyloid toxicity in the APP Swe transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 55(1):231–248

    Article  Google Scholar 

  • d’Uscio LV, Smith LA, Santhanam AV, Richardson D, Nath KA, Katusic ZS (2007) Essential role of endothelial nitric oxide synthase in vascular effects of erythropoietin. Hypertension. 49(5):1142–1148

    Article  PubMed  Google Scholar 

  • Diem R, Sättler MB, Merkler D, Demmer I, Maier K, Stadelmann C, Ehrenreich H, Bähr M (2005) Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. Brain. 128(2):375–385

    Article  PubMed  Google Scholar 

  • Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K, Liu R, Wang JZ, Zhou XW (2015) AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis 43(3):775–784

    Article  CAS  PubMed  Google Scholar 

  • Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes. 53(suppl 1):S96–S102

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich H, Degner D, Meller J, Brines M, Behe M, Hasselblatt M, Woldt H, Falkai P, Knerlich F, Jacob S, von Ahsen N (2004) Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol Psychiatry 9(1):42–54

    Article  CAS  PubMed  Google Scholar 

  • Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322(1–2):254–262

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11(1):139–150

    Article  CAS  PubMed  Google Scholar 

  • Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med 228(1):1–4

    Article  CAS  Google Scholar 

  • Fong Y, Lin YC, Wu CY, Wang HM, Lin LL, Chou HL, Teng YN, Yuan SS, Chiu CC (2014) The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis. Sci World J 2014

  • Forsgren S, Grimsholm O, Dalén T, Rantapää-Dahlqvist S (2011) Measurements in the blood of BDNF for RA patients and in response to anti-TNF treatment help us to clarify the magnitude of centrally related pain and to explain the relief of this pain upon treatment. Int J Inflamm 2011

  • Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J (2011) Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem 286(25):22227–22234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaugler J, James B, Johnson T, Marin A, Weuve J (2019) 2019 Alzheimer's disease facts and figures. Alzheimers Dement 15(3):321–387

    Article  Google Scholar 

  • Genc K, Genc S, Baskin H, Semin I (2006) Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes. Physiol Res 55(1)

  • Golden E, Emiliano A, Maudsley S, Windham BG, Carlson OD, Egan JM, Driscoll I, Ferrucci L, Martin B, Mattson MP (2010) Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore longitudinal study of aging. PLoS One 5(4):e10099

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein BI, Young LT (2013) Toward clinically applicable biomarkers in bipolar disorder: focus on BDNF, inflammatory markers, and endothelial function. Current Psychiatry Rep 15(12):425

    Article  Google Scholar 

  • Gui DM, Yang Y, Li X, Gao DW (2011) Effect of erythropoietin on the expression of HIF-1 and iNOS in retina in chronic ocular hypertension rats. Int J Ophthalmol 4(1):40

    PubMed  PubMed Central  Google Scholar 

  • Hariharan N, Maejima Y, Nakae J, Paik J, DePinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107(12):1470–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong EH, Lee SJ, Kim JS, Lee KH, Um HD, Kim JH, Kim SJ, Kim JI, Hwang SG (2010) Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem 285(2):1283–1295

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Wang S, Chen Shang Y, Zhong Chong Z, Maiese K (2011) Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res 8(3):220–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM, Ahmad A, Islam F (2009) Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer's type (SDAT). Eur Neuropsychopharmacol 19(9):636–647

    Article  CAS  PubMed  Google Scholar 

  • Jang W, Kim HJ, Li H, Jo KD, Lee MK, Yang HO (2016) The neuroprotective effect of erythropoietin on rotenone-induced neurotoxicity in SH-SY5Y cells through the induction of autophagy. Mol Neurobiol 53(6):3812–3821

    Article  CAS  PubMed  Google Scholar 

  • Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C (2020) Current evidence on the protective effects of recombinant human erythropoietin and its molecular variants against pathological hallmarks of Alzheimer’s disease. Pharmaceuticals. 13(12):424

    Article  CAS  PubMed Central  Google Scholar 

  • Javadi M, Hofstätter E, Stickle N, Beattie BK, Jaster R, Carter-Su C, Barber DL (2012) The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor. J Biol Chem 287(31):26223–26234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jelkmann W (2008) 'O', erythropoietin carbamoylation versus carbamylation. Nephrol Dial Transplant 23(9):3033-author

  • Jiang J, Tian F, Cai Y, Qian X, Costello CE, Ying W (2014) Site-specific qualitative and quantitative analysis of the N-and O-glycoforms in recombinant human erythropoietin. Anal Bioanal Chem 406(25):6265–6274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin W, Ming X, Hou X, Zhu T, Yuan B, Wang J, Ni H, Jiang J, Wang H, Liang W (2014) Protective effects of erythropoietin in traumatic spinal cord injury by inducing the Nrf2 signaling pathway activation. J Trauma Acute Care Surg 76(5):1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Kashii Y, Uchida M, Kirito K, Tanaka M, Nishijima K, Toshima M, Ando T, Koizumi K, Endoh T, Sawada KI, Momoi M (2000) A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood J Am Soc Hematol 96(3):941–949

    CAS  Google Scholar 

  • Kaushal N, Hegde S, Lumadue J, Paulson RF, Prabhu KS (2011) The regulation of erythropoiesis by selenium in mice. Antioxid Redox Signal 14(8):1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairallah MI, Kassem LA, Yassin NA, El Din MA, Zekri M, Attia M (2014) The hematopoietic growth factor" erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease. Pakistan J Biol Sci: PJBS 17(1):9–21

    Article  CAS  Google Scholar 

  • Koshimura K, Murakami Y, Sohmiya M, Tanaka J, Kato Y (1999) Effects of erythropoietin on neuronal activity. J Neurochem 72(6):2565–2572

    Article  CAS  PubMed  Google Scholar 

  • Kozako T, Aikawa A, Shoji T, Fujimoto T, Yoshimitsu M, Shirasawa S, Tanaka H, Honda SI, Shimeno H, Arima N, Soeda S (2012) High expression of the longevity gene product SIRT1 and apoptosis induction by sirtinol in adult T-cell leukemia cells. Int J Cancer 131(9):2044–2055

    Article  CAS  PubMed  Google Scholar 

  • Kumral A, Gonenc S, Acikgoz O, Sonmez A, Genc K, Yilmaz O, Gokmen N, Duman N, Ozkan H (2005) Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxic-ischemic brain injury in neonatal rats. Neonatology. 87(1):15–18

    Article  CAS  Google Scholar 

  • Lee K, Hu Y, Ding L, Chen Y, Takahashi Y, Mott R, Ma JX (2012a) Therapeutic potential of a monoclonal antibody blocking the Wnt pathway in diabetic retinopathy. Diabetes. 61(11):2948–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ST, Chu K, Park JE, Jung KH, Jeon D, Lim JY, Lee SK, Kim M, Roh JK (2012b) Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer’s disease models. J Neurochem 120(1):115–124

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Park YM, Hwang JA, Kim YK (2021) Variable alterations in plasma erythropoietin and brain-derived neurotrophic factor levels in patients with major depressive disorder with and without a history of suicide attempt. Prog Neuro-Psychopharmacol Biol Psychiatry 110:110324

    Article  CAS  Google Scholar 

  • Li Y, Lu ZY, Ogle M, Wei L (2007) Erythropoietin prevents blood brain barrier damage induced by focal cerebral ischemia in mice. Neurochem Res 32(12):2132–2141

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ogle ME, Wallace GC, Lu ZY, Yu SP, Wei L (2008) Erythropoietin attenuates intracerebral hemorrhage by diminishing matrix metalloproteinases and maintaining blood-brain barrier integrity in mice. In Cerebral Hemorrhage (pp. 105–112). Springer, Vienna

  • Lipton SA (2004) Erythropoietin for neurologic protection and diabetic neuropathy. N Engl J Med 350(24):2516–2517

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Narasimhan P, Song YS, Nishi T, Yu F, Lee YS, Chan PH (2006) Epo protects SOD2-deficient mouse astrocytes from damage by oxidative stress. Glia. 53(4):360–365

    Article  PubMed  Google Scholar 

  • Liu Y, Luo B, Han F, Li X, Xiong J, Jiang M, Yang X, Wu Y, Zhang Z (2014) Erythropoietin-derived nonerythropoietic peptide ameliorates experimental autoimmune neuritis by inflammation suppression and tissue protection. PLoS One 9(3):e90942

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yin J, Wang H, Jiang G, Deng M, Zhang G, Bu X, Cai S, Du J, He Z (2015a) FOXO3a modulates WNT/β-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal 27(3):510–518

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhu B, Zou H, Hu D, Gu Q, Liu K, Xu X (2015b) Carbamylated erythropoietin mediates retinal neuroprotection in streptozotocin-induced early-stage diabetic rats. Graefes Arch Clin Exp Ophthalmol 253(8):1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Kaiser CA, Kaiser C, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2008) Molecular cell biology. Macmillan

  • Lu MJ, Chen YS, Huang HS, Ma MC (2012) Erythropoietin alleviates post-ischemic injury of rat hearts by attenuating nitrosative stress. Life Sci 90(19–20):776–784

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Hu J, Huang C, Wang M, Xiang J, Li G (2014) JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC 12 cells by the amyloid β− peptide Aβ25–35. Br J Pharmacol 171(13):3234–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K (2014a) Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res 9(15):1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiese K (2014b) Taking aim at Alzheimer's disease through the mammalian target of rapamycin. Ann Med 46(8):587–596

    Article  CAS  PubMed  Google Scholar 

  • Maiese K (2015a) FoxO proteins in the nervous system. Anal Cell Pathol 2015

  • Maiese K (2015b) Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Curr Neurovasc Res 12(2):173–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K (2015c) SIRT1 and stem cells: in the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells 7(2):235

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC (2007) “Sly as a FOXO”: new paths with Forkhead signaling in the brain. Curr Neurovasc Res 4(4):295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Hou J (2009a) FoxO proteins: cunning concepts and considerations for the cardiovascular system. Clin Sci 116(3):191–203

    Article  CAS  Google Scholar 

  • Maiese K, Hou J, Chong ZZ, Shang YC (2009b) Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. Sci World J 9:1072–1104

    Article  CAS  Google Scholar 

  • Maiese K, Chong ZZ, Hou J, Shang YC (2010) Oxidative stress: biomarkers and novel therapeutic pathways. Exp Gerontol 45(3):217–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Wang S (2012) Erythropoietin: new directions for the nervous system. Int J Mol Sci 13(9):11102–11129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Wang S (2013) mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 19(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Marchetti B, Pluchino S (2013) Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med 19(3):144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti HH, Bernaudin M, Petit E, Bauer C (2000) Neuroprotection and angiogenesis: dual role of erythropoietin in brain ischemia. Physiology. 15(5):225–229

    Article  CAS  Google Scholar 

  • Mengozzi M, Cervellini I, Villa P, Erbayraktar Z, Gökmen N, Yilmaz O, Erbayraktar S, Manohasandra M, Van Hummelen P, Vandenabeele P, Chernajovsky Y (2012) Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke. Proc Natl Acad Sci 109(24):9617–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miljus N, Heibeck S, Jarrar M, Micke M, Ostrowski D, Ehrenreich H, Heinrich R (2014) Erythropoietin-mediated protection of insect brain neurons involves JAK and STAT but not PI3K transduction pathways. Neuroscience. 258:218–227

    Article  CAS  PubMed  Google Scholar 

  • Moon C, Krawczyk M, Paik D, Coleman T, Brines M, Juhaszova M, Sollott SJ, Lakatta EG, Talan MI (2006) Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. J Pharmacol Exp Ther 316(3):999–1005

    Article  CAS  PubMed  Google Scholar 

  • Morentin PB, Martinez-Sanchez N, Roa J, Ferno J, Nogueiras R, Tena-Sempere M, Dieguez C, Lopez M (2014) Hypothalamic mTOR: the rookie energy sensor. Curr Mol Med 14(1):3–21

    Article  Google Scholar 

  • Morishita EM, Masuda S, Nagao M, Yasuda Y, Sasaki R (1996) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience. 76(1):105–116

    Article  Google Scholar 

  • Moroz N, Carmona JJ, Anderson E, Hart AC, Sinclair DA, Blackwell TK (2014) Dietary restriction involves NAD+-dependent mechanisms and a shift toward oxidative metabolism. Aging Cell 13(6):1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Ehmsen J, Schmidt A, Krausgrill B, Schwinger RH, Bloch W (2006) Role of erythropoetin for angiogenesis and vasculogenesis: from embryonic development through adulthood. Am J Phys Heart Circ Phys 290(1):H331–H340

    Google Scholar 

  • Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10(3):209–219

    Article  CAS  PubMed  Google Scholar 

  • Naganska E, Taraszewska A, Matyja E, Grieb P, Rafałowska J (2010) Neuroprotective effect of erythropoietin in amyotrophic lateral sclerosis (ALS) model in vitro. Ultrastruct Study Folia Neuropathol 48(1):35–44

    CAS  Google Scholar 

  • Nairz M, Schroll A, Moschen AR, Sonnweber T, Theurl M, Theurl I, Taub N, Jamnig C, Neurauter D, Huber LA, Tilg H (2011) Erythropoietin contrastingly affects bacterial infection and experimental colitis by inhibiting nuclear factor-κB-inducible immune pathways. Immunity. 34(1):61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakka VP, Prakash-Babu P, Vemuganti R (2016) Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol 53(1):532–544

    Article  CAS  PubMed  Google Scholar 

  • Neasta J, Barak S, Hamida SB, Ron D (2014) mTOR complex 1: a key player in neuroadaptations induced by drugs of abuse. J Neurochem 130(2):172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh MY, Cho KA, Kim H, Kim SM, Kim SH (2014) Erythropoietin modulates the immune-inflammatory response of a SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS). Neurosci Lett 574:53–58

    Article  CAS  PubMed  Google Scholar 

  • Ozturk E, Demirbilek S, But AK, Saricicek V, Gulec M, Akyol O, Ersoy MO (2005) Antioxidant properties of propofol and erythropoietin after closed head injury in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 29(6):922–927

    Article  CAS  Google Scholar 

  • Pankratova S, Kiryushko D, Sonn K, Soroka V, Køhler LB, Rathje M, Gu B, Gotfryd K, Clausen O, Zharkovsky A, Bock E (2010) Neuroprotective properties of a novel, non-haematopoietic agonist of the erythropoietin receptor. Brain. 133(8):2281–2294

    Article  PubMed  Google Scholar 

  • Paraíso AF, Mendes KL, Santos SH (2013) Brain activation of SIRT1: role in neuropathology. Mol Neurobiol 48(3):681–689

    Article  PubMed  Google Scholar 

  • Park SS, Park J, Ko J, Chen L, Meriage D, Crouse-Zeineddini J, Wong W, Kerwin BA (2009) Biochemical assessment of erythropoietin products from Asia versus US Epoetin alfa manufactured by Amgen. J Pharm Sci 98(5):1688–1699

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Choi NY, Koh SH, Park HH, Kim YS, Kim MJ, Lee SJ, Yu HJ, Lee KY, Lee YJ, Kim HT (2011) L-DOPA neurotoxicity is prevented by neuroprotective effects of erythropoietin. Neurotoxicology. 32(6):879–887

    Article  CAS  PubMed  Google Scholar 

  • Parra AL, Rodriguez JCG (2012) Nasal neuro EPO could be a reliable choice for neuroprotective stroke treatment. Cent Nerv Syst Agents Med Chem (Formerly Curr Med Chem-Cent Nerv Syst Agents) 12(1):60–68

    CAS  Google Scholar 

  • Peng S, Zhao S, Yan F, Cheng J, Huang L, Chen H, Liu Q, Ji X, Yuan Z (2015) HDAC2 selectively regulates FOXO3a-mediated gene transcription during oxidative stress-induced neuronal cell death. J Neurosci 35(3):1250–1259

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponce LL, Navarro JC, Ahmed O, Robertson CS (2013) Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology. 20(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Qi XF, Li YJ, Chen ZY, Kim SK, Lee KJ, Cai DQ (2013) Involvement of the FoxO3a pathway in the ischemia/reperfusion injury of cardiac microvascular endothelial cells. Exp Mol Pathol 95(2):242–247

    Article  CAS  PubMed  Google Scholar 

  • Rabie T, Marti HH (2008) Brain protection by erythropoietin: a manifold task. Physiology. 23(5):263–274

    Article  CAS  PubMed  Google Scholar 

  • Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S (2019) Erythropoietin as a neuroprotective molecule: an overview of its therapeutic potential in neurodegenerative diseases. ASN neuro 11:1759091419871420

  • Rezai-Zadeh K, Gate D, Town T (2009) CNS infiltration of peripheral immune cells: D-day for neurodegenerative disease? J NeuroImmune Pharmacol 4(4):462–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzo MT, Leaver HA (2010) Brain endothelial cell death: modes, signaling pathways, and relevance to neural development, homeostasis, and disease. Mol Neurobiol 42(1):52–63

    Article  CAS  PubMed  Google Scholar 

  • Rong Z, Pan R, Xu Y, Zhang C, Cao Y, Liu D (2013) Hesperidin pretreatment protects hypoxia–ischemic brain injury in neonatal rat. Neuroscience. 255:292–299

    Article  CAS  PubMed  Google Scholar 

  • Roundtable ST (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 30(12):2752–2758

    Article  Google Scholar 

  • Ruschitzka FT, Wenger RH, Stallmach T, Quaschning T, De Wit C, Wagner K, Labugger R, Kelm M, Noll G, Rülicke T, Shaw S (2000) Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci 97(21):11609–11613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo E, Andreozzi F, Iuliano R, Dattilo V, Procopio T, Fiume G, Mimmi S, Perrotti N, Citraro R, Sesti G, Constanti A (2014) Early molecular and behavioral response to lipopolysaccharide in the WAG/Rij rat model of absence epilepsy and depressive-like behavior, involves interplay between AMPK, AKT/mTOR pathways and neuroinflammatory cytokine release. Brain Behav Immun 42:157–168

    Article  CAS  PubMed  Google Scholar 

  • Ryou MG, Choudhury GR, Li W, Winters A, Yuan F, Liu R, Yang SH (2015) Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress. Neuroscience. 301:193–203

    Article  CAS  PubMed  Google Scholar 

  • Saha AK, Xu XJ, Lawson E, Deoliveira R, Brandon AE, Kraegen EW, Ruderman NB (2010) Downregulation of AMPK accompanies leucine-and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes. 59(10):2426–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118(4):460–474

    Article  CAS  PubMed  Google Scholar 

  • Sanghera KP, Mathalone N, Baigi R, Panov E, Wang D, Zhao X, Hsu H, Wang H, Tropepe V, Ward M, Boyd SR (2011) The PI3K/Akt/mTOR pathway mediates retinal progenitor cell survival under hypoxic and superoxide stress. Mol Cell Neurosci 47(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Santhanam AV, Smith LA, Nath KA, Katusic ZS (2006) In vivo stimulatory effect of erythropoietin on endothelial nitric oxide synthase in cerebral arteries. Am J Phys Heart Circ Phys 291(2):H781–H786

    CAS  Google Scholar 

  • Sargin D, Friedrichs H, El-Kordi A, Ehrenreich H (2010) Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol 24(4):573–594

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Morsi Y, Manasseh R (2014) From mechanical stimulation to biological pathways in the regulation of stem cell fate. Cell Biochem Funct 32(4):309–325

    Article  CAS  PubMed  Google Scholar 

  • Shang YC, Chong ZZ, Hou J, Maiese K (2010) Wnt1, FoxO3a, and NF-κB oversee microglial integrity and activation during oxidant stress. Cell Signal 22(9):1317–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang YC, Chong ZZ, Wang S, Maiese K (2012) Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, bad, and Bcl-xL. Aging (Albany NY) 4(3):187

    Article  CAS  Google Scholar 

  • Shao S, Yang Y, Yuan G, Zhang M, Yu X (2013) Signaling molecules involved in lipid-induced pancreatic beta-cell dysfunction. DNA Cell Biol 32(2):41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Wu Y, Xu JY, Zhang J, Sinclair SH, Yanoff M, Xu G, Li W, Xu GT (2010) ERK-and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD. Invest Ophthalmol Vis Sci 51(1):35–46

    Article  PubMed  Google Scholar 

  • Sinclair AM (2013) Erythropoiesis stimulating agents: approaches to modulate activity. Biologics: Targets Ther 7:161

    CAS  Google Scholar 

  • Sirén AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci 98(7):4044–4049

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H (2002) Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res 44(4):391–403

    Article  CAS  PubMed  Google Scholar 

  • Sumbria RK (2020) Targeting the transferrin receptor to develop erythropoietin for Alzheimer's disease. Neural Regen Res 15(12):2251

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Martin JM, Vanderpoel V, Sumbria RK (2019a) The promises and challenges of erythropoietin for treatment of Alzheimer’s disease. NeuroMolecular Med 21(1):12–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Yang J, Whitman K, Zhu C, Cribbs DH, Boado RJ, Pardridge WM, Sumbria RK (2019b) Hematologic safety of chronic brain-penetrating erythropoietin dosing in APP/PS1 mice. Alzheimer's Dement: Transl Res Clin Interv 5:627–636

    Article  Google Scholar 

  • Tanaka T, Iino M (2014) Knockdown of S ec8 promotes cell-cycle arrest at G 1/S phase by inducing p21 via control of FOXO proteins. FEBS J 281(4):1068–1084

    Article  CAS  PubMed  Google Scholar 

  • Toledo JR, Sánchez O, Seguí RM, García G, Montañez M, Zamora PA, Rodríguez MP, Cremata JA (2006) High expression level of recombinant human erythropoietin in the milk of non-transgenic goats. J Biotechnol 123(2):225–235

    Article  CAS  PubMed  Google Scholar 

  • Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198(6):971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viviani B, Bartesaghi S, Corsini E, Villa P, Ghezzi P, Garau A, Galli CL, Marinovich M (2005) Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. J Neurochem 93(2):412–21

    Article  CAS  PubMed  Google Scholar 

  • Wagner LM, Billups CA, Furman WL, Rao BN, Santana VM (2004) Combined use of erythropoietin and granulocyte colony-stimulating factor does not decrease blood transfusion requirements during induction therapy for high-risk neuroblastoma: a randomized controlled trial. J Clin Oncol 22(10):1886–1893

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004a) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 35(7):1732–1737

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang Z, Zhang R, Hafner MS, Wong HK, Jiao Z, Chopp M (2004b) Erythropoietin up-regulates SOCS2 in neuronal progenitor cells derived from SVZ of adult rat. Neuroreport. 15(8):1225–1229

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, Wang Y, Chopp M (2006) Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26(22):5996–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GB, Ni YL, Zhou XP, Zhang WF (2014a) The AKT/mTOR pathway mediates neuronal protective effects of erythropoietin in sepsis. Mol Cell Biochem 385(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Di L, Noguchi CT (2014b) AMPK is involved in mediation of erythropoietin influence on metabolic activity and reactive oxygen species production in white adipocytes. Int J Biochem Cell Biol 54:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber A, Maier RF, Hoffmann U, Grips M, Hoppenz M, Aktas AG, Heinemann U, Obladen M, Schuchmann S (2002) Erythropoietin improves synaptic transmission during and following ischemia in rat hippocampal slice cultures. Brain Res 958(2):305–311

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Mandel S, Youdim MB, Amit T (2013) Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med 62:52–64

    Article  CAS  PubMed  Google Scholar 

  • Wenker SD, Chamorro ME, Vittori DC, Nesse AB (2013) Protective action of erythropoietin on neuronal damage induced by activated microglia. FEBS J 280(7):1630–1642

    Article  CAS  PubMed  Google Scholar 

  • Won HH, Park I, Lee E, Kim JW, Lee D. Comparative analysis of the JAK/STAT signaling through erythropoietin receptor and thrombopoietin receptor using a systems approach. BMC Bioinformatics 2009;10(1):1–0

  • Wu Y, Shang Y, Sun S, Liang H, Liu R (2007a) Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3β/caspase-3 mediated signaling pathway. Apoptosis. 12(8):1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Shang Y, Sun S, Liu R (2007b) Antioxidant effect of erythropoietin on 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells. Eur J Pharmacol 564(1–3):47–56

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Kang Y, Zhang H, Piao Z, Yin H, Diao R, Xia J, Shi L (2013) Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J Infect Dis 208(3):528–538

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Liu J, Yoshimoto K, Chen G, Iwata T, Mizusawa N, Duan Z, Wan C, Jiang J (2014) 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of p27kip1 and FoxO3a in female rat cerebral cortex and PC12 cells. Toxicol Lett 226(3):294–302

    Article  CAS  PubMed  Google Scholar 

  • Yazihan N, Uzuner K, Salman B, Vural M, Koken T, Arslantas A (2008) Erythropoietin improves oxidative stress following spinal cord trauma in rats. Injury. 39(12):1408–1413

    Article  PubMed  Google Scholar 

  • Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F (2002) Erythropoietin receptor signalling is required for normal brain development. Development. 129(2):505–516

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Shiou SR, Guo Y, Lu L, Westerhoff M, Sun J, Petrof EO, Claud EC (2013) Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis. PLoS One 8(7):e69620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Fan Y, Sun X, Yao L, Chai W (2016) Effects of erythropoietin preconditioning on rat cerebral ischemia-reperfusion injury and the GLT-1/GLAST pathway. Exp Ther Med 11(2):513–518

    Article  CAS  PubMed  Google Scholar 

  • Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Zhou TB, Harris DA, Abraham CR (2014) The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem 289(35):24700–24715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Wang R, Wu X, Liang J, Qi Z, Liu X, Min L, Ji X, Luo Y (2015) Erythropoietin delivered via intra-arterial infusion reduces endoplasmic reticulum stress in brain microvessels of rats following cerebral ischemia and reperfusion. J NeuroImmune Pharmacol 10(1):153–161

    Article  PubMed  Google Scholar 

  • Zhu Z, Yan J, Jiang W, Yao XG, Chen J, Chen L, Li C, Hu L, Jiang H, Shen X (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance. J Neurosci 33(32):13138–13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DK, TB: Conceived the idea and wrote the article; AS, MMH and SB: Figure Work; SS, NS, and AAH: Literature Search; VNB and SSH: Language Revision HK and SBU: Proof Read.

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

All the authors have approved the current manuscript for fonal publication.

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Behl, T., Sehgal, A. et al. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer’s disease. Metab Brain Dis 37, 1–16 (2022). https://doi.org/10.1007/s11011-021-00820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00820-6

Keywords

Navigation