Skip to main content

Advertisement

Log in

Antiparkinsonian activity of Cucurbita pepo seeds along with possible underlying mechanism

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cucurbita pepo is used as a vegetable in Pakistan and its seeds are also rich in tocopherol. Data showed the pivotal role of tocopherol in the treatment of Parkinson’s disease (PD). The current study was designed to probe into the antiparkinson activity of methanolic extract of C. pepo (MECP) seeds in the haloperidol-induced Parkinson rat model. Behavioral studies showed improvement in motor functions. The increase in catalase, superoxide dismutase, glutathione levels whereas the decreases in the malondialdehyde and nitrite levels were noted in a dose-dependent manner. Acetylcholine-esterase (AchE) activity was increased. Molecular docking results revealed significant binding interaction of selected phytoconstituents within an active site of target protein AchE (PDB ID: 4EY7). Furthermore, α-synuclein was up regulated with down regulation of TNF-α and IL-1β in the qRT-PCR study. Subsequently, ADMET results on the basis of structure to activity predictions in terms of pharmacokinetics and toxicity estimations show that selected phytochemicals exhibited moderately acceptable properties. These properties add knowledge towards the structural features which could improve the bioavailability of selected phytochemicals before moving towards the initial phase of the drug development. Our integrated drug discovery scheme concluded that C. pepo seeds could ameliorate symptoms of PD and may prove a lead remedy for the treatment of PD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Available upon request.

References

  • Ahmed HH et al (2009) Protective effect of Ginkgo biloba extract and pumpkin seed oil against neurotoxicity of rotenone in adult male rats. J Appl Sci Res 5(6):622–635

    Google Scholar 

  • Ali M, Saleem U, Anwar F, Imran M, Nadeem H, Ahmad B, Ali T, Ismail T (2021) Screening of synthetic isoxazolone derivative role in alzheimer’s disease: computational and pharmacological approach. Neurochem Res. https://doi.org/10.1007/s11064-021-03229-w

  • Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

    Article  CAS  PubMed  Google Scholar 

  • Bhangale JO, Acharya SR (2016) Anti-Parkinson activity of petroleum ether extract of Ficus religiosa (L.) leaves. Adv Pharmacol Sci 16:1–9

  • Bibi S, Sakata K (2017) An integrated computational approach for plant-based protein tyrosine phosphatase non-receptor type 1 inhibitors. Curr Comp-Aided Drug Des 13(4):319–335

    Article  CAS  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2006) Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur J Pharmacol 552(1–3):55–66

    Article  CAS  PubMed  Google Scholar 

  • Celeghini R, Vilegas JH, Lanças FM (2001) Extraction and quantitative HPLC analysis of coumarin in hydroalcoholic extracts of Mikania glomerata Spreng:(" guaco") leaves. J Braz Chem Soc 12(6):706–709

    Article  CAS  Google Scholar 

  • Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474

    Article  CAS  PubMed  Google Scholar 

  • Chitra V et al (2017) Effect of Hydroalcoholic extract of Achyranthes Aspera on haloperidol-induced Parkinson’s disease in Wistar rats. Asian J Pharm Clin Res 10:318–321

    Article  CAS  Google Scholar 

  • Coura CO, Souza RB, Rodrigues JAG, Vanderlei ESO, de Araújo IWF, Ribeiro NA, Frota AF, Ribeiro KA, Chaves HV, Pereira KMA, da Cunha RMS, Bezerra MM, Benevides NMB (2015) Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats. PLoS One 10(3):e0119319

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummings BJ et al (2007) Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury. Behav Brain Res 177(2):232–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1–3):10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7(4):306–318

    Article  CAS  PubMed  Google Scholar 

  • González-Jiménez FE, Salazar-Montoya JA, Calva-Calva G, Ramos-Ramírez EG (2018) Phytochemical characterization, in vitro antioxidant activity, and quantitative analysis by micellar electrokinetic chromatography of hawthorn (Crataegus pubescens) fruit. J Food Qual 2018:1–11

    Article  Google Scholar 

  • Hummon AB, Lim SR, Difilippantonio MJ, Ried T (2007) Isolation and solubilization of proteins after TRIzol® extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 42(4):467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilhan M, Ergene B, Suntar I, Ozbilgin S, Saltan Citoglu G, Demirel MA . . . Kupeli Akkol E (2014) Preclinical evaluation of antiurolithiatic activity of Viburnum opulus L. on sodium oxalate-induced urolithiasis rat model. Evid Based Complement Alternat Med 14:1–19

  • Ishola IO, Akinyede AA, Adeluwa TP, Micah C (2018) Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Metab Brain Dis 33(5):1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharmaceutic Sci 9(6):304–316

    Google Scholar 

  • Kim J-B, Kopalli SR, Koppula S (2016) Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Trop J Pharm Res 15(4):765–772

    Article  Google Scholar 

  • Koprich JB et al (2008) Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. J Neuroinflammation 5(1):1–8

    Article  Google Scholar 

  • Leal MC et al (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  • Mirza MU, Ikram N (2016) Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40. Int J Mol Sci 17(11):1748

    Article  PubMed Central  Google Scholar 

  • Murkovic M, Piironen V, Lampi AM, Kraushofer T, Sontag G (2004) Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (part 1: non-volatile compounds). Food Chem 84(3):359–365

    Article  CAS  Google Scholar 

  • Nascimento-Ferreira I, Nóbrega C, Vasconcelos-Ferreira A, Onofre I, Albuquerque D, Aveleira C, Hirai H, Déglon N, Pereira de Almeida L (2013) Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado–Joseph disease. Brain 136(7):2173–2188

    Article  PubMed  Google Scholar 

  • Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogu CC, Maxa JL (2000) Drug interactions due to cytochrome P450. In Baylor University Medical Center Proceedings. Taylor & Francis

  • Ojha S, Javed H, Azimullah S, Khair SBA, Haque ME (2015) Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Dev Ther 9:54–99

    Google Scholar 

  • Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2(4):541–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal P, Ghosh A (2018) Antioxidant, anti-alzheimer and anti-parkinson activity of Artemisia nilagirica leaves with flowering tops. UK J Pharm Biosc 6(2):12–23

    CAS  Google Scholar 

  • Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37(1):43–51

    Article  PubMed  Google Scholar 

  • Park BK, Boobis A, Clarke S, Goldring CEP, Jones D, Kenna JG, Lambert C, Laverty HG, Naisbitt DJ, Nelson S, Nicoll-Griffith DA, Obach RS, Routledge P, Smith DA, Tweedie DJ, Vermeulen N, Williams DP, Wilson ID, Baillie TA (2011) Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10(4):292–306

    Article  CAS  Google Scholar 

  • Perez Gutierrez R (2016) Review of Cucurbita pepo (pumpkin) its phytochemistry and pharmacology. Med Chem 6(1):12–21

    Article  Google Scholar 

  • Rabrenović BB, Dimić EB, Novaković MM, Tešević VV, Basić ZN (2014) The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT-Food Sci Technol 55(2):521–527

    Article  Google Scholar 

  • Rabiei Z, Solati K, Amini-Khoei H (2019) Phytotherapy in treatment of Parkinson’s disease: a review. Pharm Biol 57(1):355–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Radenović L et al (2007) Effect of glutamate antagonists on nitric oxide production in rat brain following intrahippocampal injection. Arch Biol Sci 59(1):29–36

    Article  Google Scholar 

  • Rahman H, Eswaraiah M (2008) Simple spectroscopic methods for estimating brain neurotransmitters, antioxidant enzymes of laboratory animals like mice: a review. Pharmatutor Art 1244:1–12

  • Saddala MS, Lennikov A, Huang H (2020) Discovery of small-molecule activators for glucose-6-phosphate dehydrogenase (G6PD) using machine learning approaches. Int J Mol Sci 21(4):1523

    Article  CAS  PubMed Central  Google Scholar 

  • Saleem U et al (2020) Exploring the therapeutic potentials of highly selective oxygenated Chalcone based MAO-B inhibitors in a haloperidol-induced murine model of Parkinson’s disease. Neurochem Res 45(11):2786–2799

    Article  PubMed  Google Scholar 

  • Saleem U, Akhtar R, Anwar F, Shah MA, Chaudary Z, Ayaz M, Ahmad B (2021) Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab Brain Dis. https://doi.org/10.1007/s11011-021-00683-x

  • Sanawar M, Saleem U, Anwar F, Nazir S, Akhtar MF, Ahmad B, Ismail T (2020) Investigation of anti-Parkinson activity of dicyclomine. Int J Neurosci:1–14

  • Sandhu KS, Rana AC (2013) Evaluation of anti parkinson’s activity of Nigella sativa (kalonji) seeds in chlorpromazine induced experimental animal model. Mortality 22(5):23

    Google Scholar 

  • Schwarting RK et al (1999) Strain-dependent recovery of open-field behavior and striatal dopamine deficiency in the mouse MPTP model of Parkinson’s disease. Neurotox Res 1(1):41–56

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar GP, Janakiraman U, Essa MM, Justin Thenmozhi A, Manivasagam T (2014) Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson′ s disease. Brain Res 1585:23–36

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Bafna P (2012) Effect of Cynodon dactylon on rotenone induced Parkinson’s disease. Orient Pharm Exp Med 12(3):167–175

    Article  Google Scholar 

  • Silman I, Sussman JL (2017) Recent developments in structural studies on acetylcholinesterase. J Neurochem 142:19–25

    Article  CAS  PubMed  Google Scholar 

  • Silva H, Anusari L, Ratnasooriya W, Pathirana R, Widanagamage R (2018) In vitro antibacterial activity and the minimum inhibitory concentration of aqueous seeds extract of Cucumis melo L. grown in Sri Lanka on common urinary tract infective bacteria. J Pharmacogn Phytochem 7(3):686–690

  • Singh P, Shukla R, Kumar A, Prakash B, Singh S, Dubey NK (2010) Effect of Citrus reticulata and Cymbopogon citratus essential oils on Aspergillus flavus growth and aflatoxin production on Asparagus racemosus. Mycopathologia 170(3):195–202

    Article  PubMed  Google Scholar 

  • Tillerson JL, Miller GW (2003) Grid performance test to measure behavioral impairment in the MPTP-treated-mouse model of parkinsonism. J Neurosci Methods 123(2):189–200

    Article  PubMed  Google Scholar 

  • Tsai SJ, Chao CY, Yin MC (2011) Preventive and therapeutic effects of caffeic acid against inflammatory injury in striatum of MPTPtreated mice. Eur J Pharmacol 670(2–3):441–447

    Article  CAS  PubMed  Google Scholar 

  • Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI (2011) Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease. Brain Res Bull 85(6):380–384

    Article  CAS  PubMed  Google Scholar 

  • Van de Waterbeemd H (2005) From in vivo to in vitro/in silico ADME: progress and challenges. Expert Opin Drug Metab Toxicol 1(1):1–4

    Article  PubMed  Google Scholar 

  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Xi B, Huang Y, Reilly KH, Li S, Zheng R, Barrio-Lopez MT, Martinez-Gonzalez MA, Zhou D (2015) Sugar-sweetened beverages and risk of hypertension and CVD: a dose–response meta-analysis. Br J Nutr 113(5):709–717

    Article  CAS  PubMed  Google Scholar 

  • Yadav RD et al (2011) Herbal plants used in the treatment of urolithiasis: a review. IJPSR 2(6):1412–1420

    Google Scholar 

  • Yousuf M, Khan P, Shamsi A, Shahbaaz M, Hasan GM, Haque QMR, Christoffels A, Islam A, Hassan MI (2020) Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega 5(42):27480–27491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Su B, Zhang H, Liu W, Du Q, Li Y (2019) Antiurolithiatic effect of ferulic acid on ethylene glycol induced renal calculus in experimental rats. Trop J Pharm Res 18(1):109–115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Riphah Institute of Pharmaceutical Sciences for providing laboratory facilities to complete biochemical analysis.

Author information

Authors and Affiliations

Authors

Contributions

US, MAS and BA conceived and designed the research. AS and ZC performed the experimental work. SS did qRT-PCR and ZR performed docking study. SB performed the pharmacokinetic and toxicity estimations, US, MAS, SB and BA reviewed and drafted the final manuscript.

Corresponding authors

Correspondence to Uzma Saleem or Muhammad Ajmal Shah.

Ethics declarations

Ethics approval

All applicable international and national guidelines for the care and use of animals were followed.

Consent to participate

All authors agree to participate.

Consent for publication

All authors agree to publish.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, U., Shehzad, A., Shah, S. et al. Antiparkinsonian activity of Cucurbita pepo seeds along with possible underlying mechanism. Metab Brain Dis 36, 1231–1251 (2021). https://doi.org/10.1007/s11011-021-00707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00707-6

Keywords

Navigation