Skip to main content

Advertisement

Log in

Neuroprotective effect of diclofenac on chlorpromazine induced catalepsy in rats

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Neuroinflammation plays a key role in progressive degeneration of dopaminergic cells. Upregulation of prostaglandins and free radicals formation are involved in the mechanisms of cell death in Parkinson’s disease (PD). The present study aimed to investigate the neuroprotective effect of diclofenac against chlorpromazine (CPZ) induced catalepsy and motor impairment in mice. Adult Wistar rats treated with CPZ (3 mg/kg/day, IP) were orally dosed with diclofenac and L-dopa/carbidopa for 21 days. Catalepsy was measured after 21 days of dosing by using standard bar test at 30, 60, 90, 120 and 180 min then motor performances were assessed via open field test and wire hanging test. Histopathological investigation and determination of dopamine (DA) and 3,4-Dihydroxyphenylacetic acid (DOPAC) levels of rat’s brain was also carried out. We found that CPZ treated group exhibited reduced motor impairment after 21 days of treatment in open field and wire hanging test (P < 0.01) as compared to control group. The cataleptic scores of CPZ treated rats were also significantly increased (P < 0.01) after 21 days of chronic dosing, however diclofenac treated groups showed significant reduction in cataleptic scores with improved motor performances. Histopathology of CPZ treated rats showed marked degeneration with architecture distortion in the mid brain region. Dopaminergic degeneration is confirmed by neurochemical results that showed reduced amount of dopamine and DOPAC levels in mid brain. Moreover, histopathological slides of diclofenac treated rats showed improved architecture with reduced gliosis of mid brain region as well as improved dopamine and DOPAC levels were achieved after 21 days dosing of diclofenac. Taken together, the present work provide an evidence that diclofenac ameliorated behavioral performances by mediating neuroprotection against CPZ induced PD via preventing dopaminergic neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts MB, Esselink RA, Abdo WF, Bloem BR, Verbeek MM (2012) CSF alpha-synuclein does not differentiate between parkinsonian disorders. Neurobiol Aging 33:430.e1–430.e3

  • Ajmone-Cat MA, Bernardo A, Greco A, Minghetti L (2010) Non-steroidal anti-inflammatory drugs and brain inflammation: effects on microglial functions. Pharmaceuticals 3(6):1949–1964

    CAS  PubMed  Google Scholar 

  • Al-Amin MM, Uddin MM, Rahman MM, Reza HM, Rana MS (2013) Effect of diclofenac and antidepressants on the inflammatory response in astrocyte cell culture. Inflammopharmacology 21(6):421–425

    CAS  PubMed  Google Scholar 

  • Asanuma M, Miyazaki I, Kohno M, Ogawa N (2001) Neuroprotective effects on non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76:1895–1904

    CAS  PubMed  Google Scholar 

  • Bendlin BB, Newman LM, Ries ML, Puglielli L, Carlsson CM, Sager MA, Johnson SC (2010) NSAIDs may protect against age-related brain atrophy. Front Aging Neurosci 2:35

    PubMed  Google Scholar 

  • Bigoniya P, Rana AC (2005) Psychopharmacological profile of hydro-alcoholic extract of euphorbia Neriifolia leaves in mice and rats. Indian J Exp Biol 43:859–862

    PubMed  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2006) Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur J Pharmacol 552(1–3):55–66

    CAS  PubMed  Google Scholar 

  • Bonetto A, Andersson DC, Waning DL (2015) Assessment of muscle mass and strength in mice. Bonekey Rep 4:732

    PubMed  PubMed Central  Google Scholar 

  • Cairo TA, Woodward TS, Ngan ET (2006) (2006). Decreased encoding efficiency in schizophrenia. Biol Psychiatry 59:740–746

    PubMed  Google Scholar 

  • Carta AR, Pisanu A (2013) Modulating microglia activity with PPAR-γ agonists: a promising therapy for Parkinson's disease? Neurotox Res 23(2):112–123

    CAS  PubMed  Google Scholar 

  • Casper D, Yaparpalvi U, Rempel N, Werner P (2000) Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett 289:201–20410

    CAS  PubMed  Google Scholar 

  • Chen T, Koga K, Li XY, Zhuo M (2010) Spinal microglial motility is independent of neuronal activity and plasticity in adult mice. Mol Pain 6:19

    PubMed  PubMed Central  Google Scholar 

  • Choi SH, Aid S, Bosetti F (2009) The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 30:174–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S-H, Aid S, Caracciolo L, Sakura Minami S, Niikura T, Matsuoka Y, Turner RS, Mattson MP, Bosetti F (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124(1):59–68

    CAS  PubMed  Google Scholar 

  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    CAS  PubMed  Google Scholar 

  • Conner EM, Grisham MB (1996) Inflammation, free radicals an antioxidants. Nutrition 12:274–277

    CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    CAS  PubMed  Google Scholar 

  • De La Garza R, Asnis GM (2003). The non-steroidal anti-inflammatory drug diclofenac sodium attenuates IFN-alpha induced alterations to monoamine turnover in prefrontal cortex and hippocampus Brain Res 4;977(1):70-9

  • De La Garza R, Fabrizio KR, Radoi GE, Vlad T, Asnis GM (2004) (2004). The non-steroidal anti-inflammatory drug diclofenac sodium attenuates lipopolysaccharide-induced alterations to reward behavior and corticosterone release. Behav Brain Res 149(1):77–85

    Google Scholar 

  • De La Garza R, Asnis GM, Fabrizio KR, Pedrosa E (2005) Acute diclofenac treatment attenuates lipopolysaccharide-induced alterations to basic reward behavior and HPA axis activation in rats. Psychopharmacology (Berl) 179(2):356–365

    Google Scholar 

  • Deavall DG, Martin EA, Horner JM, Roberts R (2012) Drug-induced oxidative stress and toxicity. J Toxicol 2012, Article ID 645460:13

  • Díaz-González F, Sánchez-Madrid F (2015) NSAIDs: learning new tricks from old drugs. Eur J Immunol 45(3):679–686

    PubMed  PubMed Central  Google Scholar 

  • Driver JA, Logroscino G, Lu L, Gaziano JM, Kurth T (2011) Use of non-steroidal anti-inflammatory drugs and risk of Parkinson's disease: nested case-control study. BMJ 342:d198

    PubMed  PubMed Central  Google Scholar 

  • Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy in Parkinson's disease. CNS Neurol Disord Drug Targets 9:349–372

    PubMed  Google Scholar 

  • Fahn S, Przedborski S (2000) Parkinsonism. In: Rowland LP (ed) Parkinsonism in Merritt’s neurology. Lippincott, Williams & Wilkins, New York, pp 679–693

    Google Scholar 

  • Feng Z, Li D, Fung PCW, Pei Z, Ramsden DB, Ho S (2003) COX-2-deficient mice are less prone to MPTP-neurotoxicity than wild-type mice. NeuroReport 14(15):1927–1929

    CAS  PubMed  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 55:259–272

    CAS  PubMed  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin WS (2006) (2006). Inflammation and neurodegenerative diseases. Am J Clin Nutr 83:470–474

    Google Scholar 

  • Guldberg HC, Yates CM (1969) Effects of chlorpromazine on the metabolism of catecholamines in dog brain. Br J Pharmacol 36(3):535–548

    CAS  PubMed  Google Scholar 

  • Hassanein NM, Hasan WA, Hamed MR (2004) (2004). Effects of diclofenac, piroxicam and alpha-tocopherol on monoaminelymphopoietic interfacing in mice. Arzneimittelforschung. 54(12):847–856

    CAS  PubMed  Google Scholar 

  • Hernandes MS, Britto LRG (2012) NADPH Oxidase and Neurodegeneration. Curr Neuropharmacol 10(4):321–327

    CAS  PubMed  Google Scholar 

  • Homykiewicz O (1998) Biochemical aspects of Parkinson's disease. Neurology 51:S2–S9

    Google Scholar 

  • Hoozemans JJ, O'Banion MK (2005) The role of COX-1 and COX-2 in Alzheimer's disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. Curr Drug Targets CNS Neurol Disord 4:307–315

    CAS  PubMed  Google Scholar 

  • Jaturapatporn D, Isaac MG, Mc-Cleery J, Tabet N (2012) Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev 2:CD006378

    Google Scholar 

  • Kaplan AA, Yurt KK, Deniz OG, Altun G (2017) Peripheral nerve and diclofenac sodium: molecular and clinical approaches. J Chem Neuroanat 87:2–11

    PubMed  Google Scholar 

  • Karch AM (2009). Focus on nursing pharmacology, 5thed. Philadelphia: Lippincott Williams & Wilkins; publishing CO, New York, pp. 548–551

  • Khatoon H, Najam R, Mirza T, Sikandar B (2016) Beneficial anti-parkinson effects of camel milk in Chlorpromazine- induced animal model: Behavioural and histopathological study. Pak J Pharm Sci 29(5):1525–1529

    CAS  PubMed  Google Scholar 

  • Klockgether T (2004) Parkinson’s disease:clinical aspects. Cell Tissue Res 318:115–120

    PubMed  Google Scholar 

  • Kołaczkowski M, Mierzejewski P, Bienkowski P, Wesołowska A, Newman-Tancredi A (2014) Antipsychotic, antidepressant, and cognitive-impairment properties of antipsychotics: rat profile and implications for behavioral and psychological symptoms of dementia. NaunynSchmiedeberg’s. Arch Pharmacol 387(6):545–557

    Google Scholar 

  • Krause DL, Müller N (2010) Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer's disease. Int J Alzheimers Dis 2010:732806

    PubMed  PubMed Central  Google Scholar 

  • Kulkarni SK (2007). Handbook of experimental pharmacology: 3 rd revised ed. New Delhi: VallabhPrakashan; p. 135-7

  • L’ Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy in Parkinson's disease. CNS Neurol Disord Drug Targets 9:349–372

    Google Scholar 

  • Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPAR gamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5:481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4):598–605

    CAS  PubMed  Google Scholar 

  • Makunts T, Cohen IV, Lee KC, Abagyan R (2018) Population scale retrospective analysis reveals distinctive antidepressant and anxiolytic effects of diclofenac, ketoprofen and naproxen in patients with pain. PLoS One 13(4):e0195521

    PubMed  PubMed Central  Google Scholar 

  • Marsden CD, Calne DB (1994) Recent development in parkinson's disease. Florham Park, Macmillan; Health Care Information, pp 153–164

  • Milusheva E, Baranyi M, Kittel A, Fekete A, Zelles T, Vizi ES, Sperlágh B (2008) Modulation of dopaminergic neurotransmission in rat striatum upon in vitro and in vivo diclofenac treatment. J Neurochem 105(2):360–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE (2012) Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a009381

    PubMed  PubMed Central  Google Scholar 

  • Naeem S, Ikram R, Khan SS, Rao SS (2017) NSAIDs ameliorate cognitive and motor impairment in a model of parkinsonism induced by chlorpromazine. Pak J Pharm Sci 30(3):801–808

    CAS  PubMed  Google Scholar 

  • Nair V, Arjuman A, Dorababu P, Gopalakrishna HN, Rao UC, Mohan L (2007) Effect of NR-ANX-C (a polyherbal formulation) on haloperidol induced catalepsy in albino mice. Indian J Med Res 126:480–484

    CAS  PubMed  Google Scholar 

  • Ng F, Berk M, Dean O, Bush AI (2008) 2008. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11(6):851–876

    CAS  PubMed  Google Scholar 

  • Parepally JM, Mandula H, Smith QR (2006) Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin. Pharm Res 23:873–881

    CAS  PubMed  Google Scholar 

  • Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37:43–51

    PubMed  Google Scholar 

  • Pires JG, Bonikovski V, Futuro-Neto HA (2005) Acute effects of selective serotonin reuptake inhibitors on neuroleptic-induced catalepsy in mice. Braz J Med Biol Res 38(12):1867–1872 Epub

    CAS  PubMed  Google Scholar 

  • Pizza V, Agresta A, D'Acunto CW, Festa M, Capasso A (2011) Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets 10(5):621–634

    CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    CAS  PubMed  Google Scholar 

  • Reines SA, Block GA, Morris JC, Liu G, Nessly ML, Lines CR, Norman BA, Baranak CC (2004) Rofecoxib: No effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology 62:66–71

    CAS  PubMed  Google Scholar 

  • Riaz B, Ikram R, Sikandar B (2018 Mar) 2018. Anticataleptic activity of Zamzam water in chlorpromazine induced animal model of Parkinson disease. Pak J Pharm Sci 31(2):393–397

    CAS  PubMed  Google Scholar 

  • Sairam K, Saravanan KS, Banerjee R, Mohanakumar KP (2003) Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Brain Res 966(2):245–252

    CAS  PubMed  Google Scholar 

  • Sandhu K, Rana A (2013). Evaluation of antiparkinson’s activity of Nigella Sativa seeds in chlorpromazine induced experimental animal model . Academic Sciences: Aug 201, Vol 5, Suppl 3, 0975-1491

  • Sestakova N, Puzserova A, Kluknavsky M, Bernatova I (2013) Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol 6(3):126–135

    PubMed  PubMed Central  Google Scholar 

  • Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y (2000) Action of adenosine A2A receptor antagonist KW-6002 on drug induced catalepsy and hypokinesia caused by reserpine. Psychopharmacology 1324

  • Swiatkiewicz M, Zaremba M, Joniec I, Cztonkowski A, Kurkowska-Jastrzebska I (2013) Potential neuroprotective effect of ibuprofen, insight from the mice model of Parkinson disease. Pharmacol Rep 65:1227–1236 Issue 1734-1140

    CAS  PubMed  Google Scholar 

  • Taepavarapruk P, Floresco SB, Phillips AG (2000) Hyperloco-motion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamineD1 receptors. Psychopharmacology (Berlin) 151:242–251

    CAS  Google Scholar 

  • Takahashi E, Niimi K, Itakura C (2009) Motor coordination impairment in aged heterozygous rolling Nagoya, Cav2.1 mutant mice. Brain Res 1279:50–57

    CAS  PubMed  Google Scholar 

  • Takween S, Ahmed SP, Haider S, Haleem DJ (1998) Effect of chlorpromazine on brain biogenic amines in normal and hyperglycemic state. Pak J Pharm Sci 11(2):23–29

    CAS  PubMed  Google Scholar 

  • Tansey MG, Goldberg MS (2009) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518

    PubMed  PubMed Central  Google Scholar 

  • Terry AV, Warner SE, Vandenhuerk L, Pillai A, Mahadik SP, Zhang G, Bartlett MG (2008) Negative effects of chronic oral chlorpromazine and olanzapine treatment on the performance of tasks designed to assess spatial learning and working memory in rats. Neuroscience 156(4):1005–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terzi M, Altun G, Şen S, Kocaman A, Kaplan AA, Yurt KK, Kaplan S (2018) The use of non-steroidal anti-inflammatory drugs in neurological diseases. J Chem Neuroanat 87:12–24

    CAS  PubMed  Google Scholar 

  • Ton TG, Heckbert SR, Longstreth WT et al (2006) Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov Disord 21:964–969

    PubMed  Google Scholar 

  • Townsend KP, Pratico D (2005) Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J 19:1592–1601

    CAS  PubMed  Google Scholar 

  • Wakade CG, Mahadik SP, Waller JL, Chiu FC (2002) Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 69:72–79

    CAS  PubMed  Google Scholar 

  • Walker D, Lue L-F (2007) Anti-inflammatory and immune therapy for Alzheimer’s disease: current status and future directions. Curr Neuropharmacol 5(4):232–243

    CAS  PubMed  Google Scholar 

  • Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:19

    PubMed  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the etiology of Parkinson's disease. Br J Pharmacol 150(8):963–976

    CAS  PubMed  Google Scholar 

  • Yamada T, Kawamata T, Walker DG, McGeer PL (1992) Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol 84(2):157–162

    CAS  PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z et al (2005) Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J 19(6):533–542

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Naeem.

Ethics declarations

Conflict of interest

No conflict of interest associated with this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, S., Najam, R., Khan, S.S. et al. Neuroprotective effect of diclofenac on chlorpromazine induced catalepsy in rats. Metab Brain Dis 34, 1191–1199 (2019). https://doi.org/10.1007/s11011-019-00416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00416-1

Keywords

Navigation