Skip to main content
Log in

Impaired lipid metabolism markers to assess the risk of neuroinflammation in autism spectrum disorder

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a multifactorial disorder caused by an interaction between environmental risk factors and a genetic background. It is characterized by impairment in communication, social interaction, repetitive behavior, and sensory processing. The etiology of ASD is still not fully understood, and the role of neuroinflammation in autism behaviors needs to be further investigated. The aim of the present study was to test the possible association between prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), prostaglandin PGE2 EP2 receptors and nuclear kappa B (NF-κB) and the severity of cognitive disorders, social impairment, and sensory dysfunction. PGE2, COX-2, mPGES-1, PGE2-EP2 receptors and NF-κB as biochemical parameters related to neuroinflammation were determined in the plasma of 47 Saudi male patients with ASD, categorized as mild to moderate and severe as indicated by the Childhood Autism Rating Scale (CARS) or the Social Responsiveness Scale (SRS) or the Short Sensory Profile (SSP) and compared to 46 neurotypical controls. The data indicated that ASD patients have remarkably higher levels of the measured parameters compared to neurotypical controls, except for EP2 receptors that showed an opposite trend. While the measured parameter did not correlate with the severity of social and cognitive dysfunction, PGE2, COX-2, and mPGES-1 were remarkably associated with the dysfunction in sensory processing. NF-κB was significantly increased in relation to age. Based on the discussed data, the positive correlation between PGE2, COX-2, and mPGES-1 confirm the role of PGE2 pathway and neuroinflammation in the etiology of ASD, and the possibility of using PGE2, COX-2 and mPGES-1 as biomarkers of autism severity. NF-κB as inflammatory inducer showed an elevated level in plasma of ASD individuals. Receiver operating characteristic analysis together with predictiveness diagrams proved that the measured parameters could be used as predictive biomarkers of biochemical correlates to ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA :

Arachidonic acid

ASD :

Autism spectrum disorder

CARS :

Childhood autism rating scale

COX-2 :

Cyclooxygenase-2

cPLA2 :

Cytosolic phospholipase A2

GSH :

Glutathione

IFNγ :

Interferon gamma

IL-6 :

Interleukin-6

mPGES-1 :

Microsomal prostaglandin E synthase-1

NF-κB :

Nuclear factor kappa B

NMDA :

N-methyl-D-aspartate

PGE2 :

Prostaglandin E2

PGE2-EP2 :

Prostaglandin E2 EP2 receptors

PUFAs :

Polyunsaturated fatty acids

ROC-curve :

Receiver operating characteristics curve

ROS :

Reactive oxygen species

SRS :

Social responsiveness scale

SSP :

Short sensory profile

TNF-α :

Tumor necrosis factor alpha

References

  • Ahmad AS, Zhuang H, Echeverria V, Doré S (2006) Stimulation of prostaglandin EP2 receptors prevents NMDA-induced excitotoxicity. J Neurotrauma 23:1895–1903

    Article  PubMed  Google Scholar 

  • Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L (2009) Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 42:1032–1040

    Article  PubMed  CAS  Google Scholar 

  • Allan SM, Rothwell NJ (2003) Inflammation in central nervous system injury. Philos Trans R Soc Lond Ser B Biol Sci 358:1669–1677

    Article  CAS  Google Scholar 

  • Bell JG, MacKinlay EE, Dick JR, MacDonald DJ, Boyle RM, Glen AC (2004) Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot Essent Fatty Acids 71:201–204

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    Article  PubMed  CAS  Google Scholar 

  • Bjørklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, Urbina MA (2016) Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp 76:257–268

    Google Scholar 

  • Blais V, Rivest S (2001) Inhibitory action of nitric oxide on circulating tumor necrosis factor-induced NF-kappaB activity and COX-2 transcription in the endothelium of the brain capillaries. J Neuropathol Exp Neurol 60:893–905

    Article  PubMed  CAS  Google Scholar 

  • Blaylock RL, Strunecka A (2009) Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr Med Chem 16:157–170

    Article  PubMed  CAS  Google Scholar 

  • Bonventre JV, Huang Z, Taheri MR, O'Leary E, Li E, Moskowitz MA, Sapirstein A (1997) Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625

    Article  PubMed  CAS  Google Scholar 

  • Bradbury J (2011) Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients 3:529–554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camacho M, Gerbolés E, Escudero JR, Antón R, García-Moll X, Vila L (2007) Microsomal prostaglandin E synthase-1, which is not coupled to a particular cyclooxygenase isoenzyme, is essential for prostaglandin E(2) biosynthesis in vascular smooth muscle cells. J Thromb Haemost 5:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Carrasco E, Werner P, Casper D (2008) Prostaglandin receptor EP2 protects dopaminergic neurons against 6-OHDA-mediated low oxidative stress. Neurosci Lett 441:44–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arevalo-Serrano J, Gonzalo-Ruiz A (2012) Oligomers of beta-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Experimental neurology 236(2): 215–227

  • Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sci 75:2539–2549

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Magee JC, Bazan NG (2002) Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol 87:2851–2857

    Article  PubMed  CAS  Google Scholar 

  • Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor alpha in CSF of autistic children. Pediatr Neurol 36:361–365

    Article  PubMed  Google Scholar 

  • Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W (2003) Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord 33:427–433

    Article  PubMed  Google Scholar 

  • Das UN (2013) Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 29:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Dunn W (1999) Sensory profile manual. Psychological Corporation, San Antonio

    Google Scholar 

  • El-Ansary A, Al-Ayadhi L (2012) Lipid mediators in plasma of autism spectrum disorders. Lipid Health Dis 11:160. https://doi.org/10.1186/1476-511X-11-160

    Article  CAS  Google Scholar 

  • El-Ansary A, Al-Ayadhi L (2014) GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflammation 11(189):189. https://doi.org/10.1186/s12974-014-0189-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Ansary A, Hassan WM, Qasem H, Das UN (2016) Identification of biomarkers of impaired sensory profiles among autistic patients. PLoS One 11:e0164153. https://doi.org/10.1371/journal.pone.0164153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Essa MM, Guillemin GJ, Waly MI, Al-Sharbati MM, Al-Farsi YM, Hakkim FL, Ali A, Al-Shafaee MS (2012) Increased markers of oxidative stress in autistic children of the Sultanate of Oman. Biol Trace Elem Res 147:25–27

    Article  PubMed  CAS  Google Scholar 

  • Foudi N, Louedec L, Cachina T, Brink C, Norel X (2009) Selective cyclooxygenase-2 inhibition directly increases human vascular reactivity to norepinephrine during acute inflammation. Cardiovasc Res 81:269–277

    Article  PubMed  CAS  Google Scholar 

  • Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B, Bonassi S (2012) Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 52:2128–2141

    Article  PubMed  CAS  Google Scholar 

  • Frye RE, Delatorre R, Taylor H, Slattery J, Melnyk S, Chowdhury N, James SJ (2013) Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry 3:e273. https://doi.org/10.1038/tp.2013.51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gadad BS, Hewitson L, Young KA, German DC (2013) Neuropathology and animal models of autism: genetic and environmental factors. Autism Res Treat 2013:731935–731912. https://doi.org/10.1155/2013/731935

    Article  PubMed  PubMed Central  Google Scholar 

  • Goines PE, Ashwood P (2013) Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol 36:67–68

    Article  PubMed  CAS  Google Scholar 

  • Gordan J (2013) One in every 50 children has autism. UCLA Medical School CDC. http://www.huffingtonpost.com/jay-gordon/autismrates_b_2921256.html. Accessed 12 October 2017

  • Hein AM, Stutzman DL, Bland ST, Barrientos RM, Watkins LR, Rudy JW, Maier SF (2007) Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience 150:754–763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Innis SM (2000) The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci 22:474–480

    Article  PubMed  CAS  Google Scholar 

  • Jenab S, Quinones-Jenab V (2002) The effects of interleukin-6, leukemia inhibitory factor and interferon-gamma on STAT DNA binding and c-fos mRNA levels in cortical astrocytes and C6 glioma cells. Neuro Endocrinol Lett 23:325–328

    PubMed  CAS  Google Scholar 

  • Kaufmann WE, Andreasson KI, Isakson PC, Worley PF (1997) Cyclooxygenases and the central nervous system. Prostaglandins 54:601–624

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Jae Kim H, Kyung Park J, Woo J, Ho Chung J (2010) Association between polymorphisms of arachidonate 12-lipoxygenase (ALOX12) and schizophrenia in a Korean population. Behav Brain Funct 6:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King CR (2011) A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism 'epidemic'. Med Hypotheses 76:653–660

    Article  PubMed  CAS  Google Scholar 

  • Kunz T, Oliw EH (2001) The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci 13:569–575

    Article  PubMed  CAS  Google Scholar 

  • Kuratko CN, Salem N Jr (2009) Biomarkers of DHA status. Prostaglandins Leukot Essent Fatty Acids 81:111–118

    Article  PubMed  CAS  Google Scholar 

  • Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648

    Article  PubMed  CAS  Google Scholar 

  • Kwon DJ, Ju SM, Youn GS, Choi SY, Park J (2013) Suppression of iNOS and COX-2 expression by flavokawain A via blockade of NF-κB and AP-1 activation in RAW 264.7 macrophages. Food and chemical toxicology 58:479–486

  • Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19:10923–10930

    Article  PubMed  CAS  Google Scholar 

  • Lawrence G (2010) The fats of life: essential fatty acids in health and disease. Rutgers University Press, New Brunswick

    Google Scholar 

  • Lee EO, Shin YJ, Chong YH (2004) Mechanisms involved in prostaglandin E2-mediated neuroprotection against TNF-alpha: possible involvement of multiple signal transduction and beta-catenin/T-cell factor. J Neuroimmunol 155:21–31

    Article  PubMed  CAS  Google Scholar 

  • Li W, Xia J, Sun GY (1999) Cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC): response to genistein and pyrrolidine dithiocarbamate. J Interf Cytokine Res 19:121–127

    Article  Google Scholar 

  • Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Wu L, Breyer R, Mattson MP, Andreasson K (2005) Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol 57:758–761

    Article  PubMed  CAS  Google Scholar 

  • Liu YQ, Hu XY, Lu T, Cheng YN, Young CY, Yuan HQ, Lou HX (2012) Retigeric acid B exhibits antitumor activity through suppression of nuclear factor-κB signaling in prostate cancer cells in vitro and in vivo. PloS one 7(5):e38000

  • Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manna SK, Zhang HJ, Yan T, Oberley LW, Aggarwal BB (1998) Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of 10.1007/s11011-018-0206-6 nuclear transcription factor-κB and activated protein-1. Journal of Biological Chemistry, 273(21), 13245–13254

  • Mark KS, Trickler WJ, Miller DW (2001) Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297:1051–1058

    PubMed  CAS  Google Scholar 

  • Marshall PJ, Kulmacz RJ, Lands WE (1987) Constraints on prostaglandin biosynthesis in tissues. J Biol Chem 262:3510–3517

    PubMed  CAS  Google Scholar 

  • Marusic S, Leach MW, Pelker JW, Azoitei ML, Uozumi N, Cui J, Shen MW, DeClercq CM, Miyashiro JS, Carito BA, Thakker P, Simmons DL, Leonard JP, Shimizu T, Clark JD (2005) Cytosolic phospholipase A2 alpha-deficient mice are resistant to experimental autoimmune encephalomyelitis. J Exp Med 202:841–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q, Breyer RM, Andreasson K (2004) Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 24:257–268

    Article  PubMed  CAS  Google Scholar 

  • Meguid NA, Dardir AA, Abdel-Raouf ER, Hashish A (2011) Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res 143:58–65

    Article  PubMed  CAS  Google Scholar 

  • Mick K (2005) Diagnosing autism: comparison of the childhood autism rating scale (CARS) and the autism diagnostic observation schedule (ADOS). Dissertation, Wichita State University

  • Moolwaney AS, Igwe OJ (2005) Regulation of the cyclooxygenase-2 system by interleukin-1beta through mitogen-activated protein kinase signaling pathways: a comparative study of human neuroglioma and neuroblastoma cells. Brain Res Mol Brain Res 137:202–212

    Article  PubMed  CAS  Google Scholar 

  • Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N, Manna SK (2011) A study of nuclear transcription factor-kappa B in childhood autism. PLoS One 6:e19488. https://doi.org/10.1371/journal.pone.0019488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O'Banion MK, Miller JC, Chang JW, Kaplan MD, Coleman PD (1996) Interleukin-1 beta induces prostaglandin G/H synthase-2 (cyclooxygenase-2) in primary murine astrocyte cultures. J Neurochem 66:2532–2540

    Article  PubMed  CAS  Google Scholar 

  • Pooler AM, Arjona AA, Lee RK, Wurtman RJ (2004) Prostaglandin E2 regulates amyloid precursor protein expression via the EP2 receptor in cultured rat microglia. Neurosci Lett 362:127–130

    Article  PubMed  CAS  Google Scholar 

  • Pugh CR, Kumagawa K, Fleshner M, Watkins LR, Maier SF, Rudy JW (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav Immun 12:212–229

    Article  PubMed  CAS  Google Scholar 

  • Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348–364

    Article  PubMed  CAS  Google Scholar 

  • Richardson AJ (2004) Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders. Lipids 39:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2:e134. https://doi.org/10.1038/tp.2012.61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401

    Article  PubMed  CAS  Google Scholar 

  • Rossignol DA, Frye RE (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5(150). https://doi.org/10.3389/fphys.2014.00150

  • Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59:207–224

    Article  PubMed  CAS  Google Scholar 

  • Sang N, Zhang J, Marcheselli V, Bazan NG, Chen C (2005) Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J Neurosci 25:9858–9870

    Article  PubMed  CAS  Google Scholar 

  • Sareddy GR, Geeviman K, Ramulu C, Babu PP (2012) The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-κB pathway. J Neuro-Oncol 106:99–109

    Article  CAS  Google Scholar 

  • Savonenko A, Munoz P, Melnikova T, Wang Q, Liang X, Breyer RM, Montine TJ, Kirkwood A, Andreasson K (2009) Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp Neurol 217:63–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A (2010) Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur J Pediatr 169:149–164

    Article  PubMed  CAS  Google Scholar 

  • Silver WG, Rapin I (2012) Neurobiological basis of autism. Pediatr Clin N Am 59:45–61

    Article  Google Scholar 

  • Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    Article  PubMed  CAS  Google Scholar 

  • Song C, Horrobin D (2004) Omega-3 fatty acid ethyl -eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1 beta administration. J Lipid Res 45:1112–1121

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Ma J, Campos H, Hankinson SE, Hu FB (2007) Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr 86:74–81

    Article  PubMed  CAS  Google Scholar 

  • Swiergiel AH, Dunn AJ (2002) Distinct roles for cyclooxygenases 1 and 2 in interleukin-1-induced behavioral changes. J Pharmacol Exp Ther 302:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Tammali R, Ramana KV, Srivastava SK (2007) Aldose reductase regulates TNF-alpha-induced PGE2 production in human colon cancer cells. Cancer Lett 252:299–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tassoni D, Kaur G, Weisinger RS, Sinclair AJ (2008) The role of eicosanoids in the brain. Asia Pac J Clin Nutr 17(Suppl 1):220–228

    PubMed  CAS  Google Scholar 

  • Tian J, Kim SF, Hester L, Snyder SH (2008) S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci U S A 105:10537–10540

    Article  PubMed  PubMed Central  Google Scholar 

  • Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F, Komagata Y, Maki K, Ikuta K, Ouchi Y, Miyazaki J, Shimizu T (1997) Role of cytosolic phospholipase A2 in allergic response and parturition. Nature 390:618–622

    Article  PubMed  CAS  Google Scholar 

  • Uracz W, Uracz D, Olszanecki R, Gryglewski RJ (2002) Interleukin 1beta induces functional prostaglandin E synthase in cultured human umbilical vein endothelial cells. J Physiol Pharmacol 53:643–654

    PubMed  CAS  Google Scholar 

  • Vancassel S, Durand G, Barthélémy C, Lejeune B, Martineau J, Guilloteau D, Andrès C, Chalon S (2001) Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids 65:1–7

    Article  PubMed  CAS  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven JS, De Cock P, Lagae L, Sunaert S (2010) Neuroimaging of autism. Neuroradiology 52:3–14

    Article  PubMed  Google Scholar 

  • Vila L (2004) Cyclooxygenase and 5-lipoxygenase pathways in the vessel wall: role in atherosclerosis. Med Res Rev 24:399–424

    Article  PubMed  CAS  Google Scholar 

  • Wallace JL (2001) Prostaglandin biology in inflammatory bowel disease. Gastroenterol Clin N Am 30:971–980

    Article  CAS  Google Scholar 

  • Wang F, Wu H, Xu S, Guo X, Yang J, Shen X (2011) Macrophage migration inhibitory factor activates cyclooxygenase 2-prostaglandin E2 in cultured spinal microglia. Neurosci Res 71:210–218

    Article  PubMed  CAS  Google Scholar 

  • Warner TD, Vojnovic I, Giuliano F, Jiménez R, Bishop-Bailey D, Mitchell JA (2004) Cyclooxygenases 1, 2, and 3 and the production of prostaglandin I2: investigating the activities of acetaminophen and cyclooxygenase-2-selective inhibitors in rat tissues. J Pharmacol Exp Ther 310:642–647

    Article  PubMed  CAS  Google Scholar 

  • World Medical Association (2000) World Medical Association declaration of Helsinki: ethical principles for medical research involving human subjects. Edinburgh, Canary Publications

  • Xu J, Yu S, Sun AY, Sun GY (2003) Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radic Biol Med 34:1531–1543

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11:371–786

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Zhang J, Breyer RM, Chen C (2009) Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J Neurochem 108:295–304

    Article  PubMed  CAS  Google Scholar 

  • Yoo HJ, Kim H-W, Cho IH, Kim SA, Park M, Kim JW (2008) Are the behavioural phenotypes different according to the genotype of iNOS and COX-2 genes in autism spectrum disorders? Int. J. Devl. Neuroscience 26:867–892

    Google Scholar 

  • Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G (2003) Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 553:407–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by a grant from the Research Center of the Center for Female Scientific and Medical Colleges at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afaf El-Ansary.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the authorship, and/or publication of this article.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasem, H., Al-Ayadhi, L., Bjørklund, G. et al. Impaired lipid metabolism markers to assess the risk of neuroinflammation in autism spectrum disorder. Metab Brain Dis 33, 1141–1153 (2018). https://doi.org/10.1007/s11011-018-0206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0206-6

Keywords

Navigation