Skip to main content

Advertisement

Log in

The effects of induced type-I diabetes on developmental regulation of insulin & insulin like growth factor-1 (IGF-1) receptors in the cerebellum of rat neonates

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Diabetes during pregnancy impairs brain development in offspring, leading to behavioral problems, motor dysfunction and learning deficits. Insulin and insulin-like growth factor-1 (IGF-1) are important regulators of developmental and cognitive functions in the central nervous system. Aim of the present study was to examine the effects of maternal diabetes on insulin receptor (InsR) and IGF-1 receptor (IGF-1R) expression in the developing rat cerebellum. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at P0, P7, and P14, an active neurogenesis period in brain development equivalent to the third trimester in human. The expression of InsR and IGF-1R in cerebelli was evaluated using real-time PCR and western blot analysis. We found a significant upregulation of both IGF-1R and InsR transcripts in cerebellum of pups born to diabetic mothers at P0, compared to controls. However, at the same time point, the results of western blot analysis revealed only a slight change in their protein levels. In contrast to InsR, which does not show any difference, there was a markedly reduction in cerebellar expression of IGF-1R mRNA and protein level in the diabetic group of newborns at P7. Moreover, 2 weeks after birth, mRNA expression and protein levels of both InsR and IGF-1R in cerebellum of the diabetic group was significantly downregulated. Compared to controls, we did not find any difference in cerebellar InsR or IGF-1R mRNA and protein levels in the insulin treated group. The present study revealed that diabetes during pregnancy strongly influences the regulation of both InsR and IGF-1R in the developing cerebellum. Furthermore, optimal maternal glycaemia control by insulin administration normalized these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts L, van Assche FA (1977) Rat foetal endocrine pancreas in experimental diabetes. Endocrinology 73:339–346

    CAS  Google Scholar 

  • Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21:261–273

    CAS  PubMed  Google Scholar 

  • Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellumindependent of motor involvement. Science 275:1940–1943

    CAS  PubMed  Google Scholar 

  • Allen VM, Armson BA, Wilson RD, Blight C, Gagnon A, Johnson JA, Langlois S, Summers A, Wyatt P, Farine D et al (2007) Teratogenicity associated with pre-existing and gestational diabetes. J Obstet Gynaecol Can 29:927–944

    PubMed  Google Scholar 

  • Anderson MF, Aberg MA, Nilsson M, Eriksson PS (2002) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134:115–122

    CAS  PubMed  Google Scholar 

  • Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto L (1996) Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional pre-frontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA 93:9985–9990

    CAS  PubMed  Google Scholar 

  • Anlar B, Sullivan KA, Feldman EL (1999) Insulin-like growth factor-I and central nervous system development. Horm Metab Res 31:120–125

    CAS  PubMed  Google Scholar 

  • Babiker OO (2007) Long-term effects of maternal diabetes on their offspring development and behaviours. Sudanese J Ped 8:133–146

    Google Scholar 

  • Bach MA, Shen-Orr Z, Lowe WL Jr, Roberts CT Jr, LeRoith D (1991) Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res Mol Brain Res 10:43–48

    CAS  PubMed  Google Scholar 

  • Bains M, Florez-McClure ML, Heidenreich KA (2009) Insulin-like growth factor-I prevents the accumulation of autophagic vesicles and cell death in purkinje neurons by increasing the rate of autophagosome-to-lysosome fusion and degradation. J Biol Chem 284:20398–20407

    CAS  PubMed  Google Scholar 

  • Banks WA, Jaspan JB, Kastin AJ (1997) Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 18:1257–1262

    CAS  PubMed  Google Scholar 

  • Baron-Van Evercooren A, Olichon-Berthe C, Kowalski A, Visciano G, Van Obberghen E (1991) Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J Neurosci Res 28:244–253

    CAS  PubMed  Google Scholar 

  • Bartlett WP, Li XS, Williams M, Benkovic S (1991) Localization of insulin-like growth factor-1 mRNA in murine central nervous system during postnatal development. Dev Biol 147:239–250

    CAS  PubMed  Google Scholar 

  • Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM (1988) Insulin and insulin-like growth factors in the CNS. Trends Neurosci 11:107–111

    CAS  PubMed  Google Scholar 

  • Beaton A, Marien P (2010) Language, cognition and the cerebellum: grappling with an enigma. Cotex 46:811–820

    Google Scholar 

  • Beck F, Samani NJ, Byrne S, Morgan K, Gebhard R, Brammar WJ (1988) Histochemical localization of IGF-I and IGF-II mRNA in the rat between birth and adulthood. Development 104:29–39

    CAS  PubMed  Google Scholar 

  • Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995) Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14:717–730

    CAS  PubMed  Google Scholar 

  • Behringer RR, Lewin TM, Quaife CJ, Palmiter RD, Brinster RL, D’Ercole AJ (1990) Expression of insulin-like growth factor I stimulates normal somatic growth in growth hormone-deficient transgenic mice. Endocrinology 127:1033–1040

    CAS  PubMed  Google Scholar 

  • Bondy CA (1991) Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci 11:3442–3455

    CAS  PubMed  Google Scholar 

  • Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31

    CAS  PubMed  Google Scholar 

  • Breese CR, D’Costa A, Booze RM, Sonntag WE (1991) Distribution of insulin-like growth factor 1 (IGF-1) and 2 (IGF-2) receptors in the hippocampal formation of rats and mice. Adv Exp Med Biol 293:449–458

    CAS  PubMed  Google Scholar 

  • Brooks VB (1981) Comment: on functions of the “cerebellar circuit” in movement control. Can J Physiol Pharmacol 59:776–778

    CAS  PubMed  Google Scholar 

  • Bucht G, Adolfsson R, Lithner F, Winblad B (1983) Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer’s type. Acta Medica Scand 213:387–392

    CAS  Google Scholar 

  • Bugalho P, Correa B, Viana-Baptista M (2006) Role of cerebellum in cognitive and behavioral control: scientific basis and investigation models. Acta Med Port 19:257–268

    PubMed  Google Scholar 

  • Cardell BS (1953) Hypertrophy and hyperplasia of the pancreatic islets in new-born infants. J Pathol Bacteriol 66:335–346

    CAS  PubMed  Google Scholar 

  • Carrapato MR, Marcelino F (2001) The infant of the diabetic mother: the critical developmental windows. Early Pregnancy 5:57–58

    CAS  PubMed  Google Scholar 

  • Carson MJ, Behringer RR, Brinster RL, McMorris FA (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10:729–740

    CAS  PubMed  Google Scholar 

  • Casson IF, Clarke CA, Howard CV, McKendrick O, Pennycook S, Pharoah PO, Platt MJ, Stanisstreet M, van Velszen D, Walkinshaw S (1997) Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. BMJ 315:275–278

    CAS  PubMed  Google Scholar 

  • Castellucci M, Kaufmann P (1995) Basic structure of the villous trees. In: Benirschke K, Kaufmann P (eds) Pathology of the human placenta. Springer, New York, pp 57–115

    Google Scholar 

  • Cederberg J, Picard JJ, Eriksson UJ (2003) Maternal diabetes in the rat impairs the formation of neural-crest derived cranial nerve ganglia in the offspring. Diabetologia 46:1245–1251

    CAS  PubMed  Google Scholar 

  • Chang TI, Horal M, Jain SK, Wang F, Patel R, Loeken MR (2003) Oxidant regulation of gene expression and neural tube development: insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia 46:538–545

    CAS  PubMed  Google Scholar 

  • Cheng CM, Cohen M, Tseng V, Bondy CA (2001) Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res 64:341–347

    CAS  PubMed  Google Scholar 

  • Chiu SL, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5:7

    PubMed  Google Scholar 

  • Chrysis D, Calikoglu AS, Ye P, D’Ercole AJ (2001) Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J Neurosci 21:1481–1489

    CAS  PubMed  Google Scholar 

  • Churchill JA, Berendes HW, Nemore J (1969) Neuropsychological deficits in children of diabetic mothers. A report from the Collaborative Sdy of Cerebral Palsy. Am J Obstet Gynecol 105:257–268

    CAS  PubMed  Google Scholar 

  • Comblath M, Schwartz R (1976) Disorders of carbohydrates metabolism in infancy, 2nd edn. WB Saunders, Philadelphia

    Google Scholar 

  • D Agostino AN, Bahn RC (1963) A histopathologic study of the pancreas of infants of diabetic mothers. Diabetes 12:327–331

    CAS  PubMed  Google Scholar 

  • D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G (1996) The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 13:227–255

    PubMed  Google Scholar 

  • D’Ercole AJ, Ye P, O’Kusky JR (2002) Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36:209–220

    PubMed  Google Scholar 

  • De Keyser J, Wilczak N, Goossens A (1994) Insulin-like growth factor-I receptor densities in human frontal cortex and white matter during aging, in Alzheimer’s disease, and in Huntington’s disease. Neurosci Lett 172:93–96

    PubMed  Google Scholar 

  • de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18:143–150

    PubMed  Google Scholar 

  • Dheen ST, Tay SSW, Boran J, Ting LW, Kumar SD, Fu J, Ling EA (2009) Recent studies on neural tube defects in embryos of diabetic pregnancy: an overview. Curr Med Chem 16:2345–2354

    CAS  PubMed  Google Scholar 

  • Diamond A (2000) Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev 71:44–56

    CAS  PubMed  Google Scholar 

  • Dolan RJ (1998) A cognitive affective role for the cerebellum. Brain 121:545–546

    PubMed  Google Scholar 

  • Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ (2005) Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn Mem 12:646–655

    PubMed  Google Scholar 

  • Eccles JC (1981) Physiology of motor control in man. Appl Neurophysiol 44:5–15

    CAS  PubMed  Google Scholar 

  • Eidelman AI, Samueloff A (2002) The pathophysiology of the fetus of the diabetic mother. Semin Perinatol 26:232–236

    PubMed  Google Scholar 

  • Entingh-Pearsall A, Kahn CR (2004) Differential roles of the insulin and insulin-like growth factor-I (IGF-I) receptors in response to insulin and IGF-I. J Biol Chem 279:38016–38024

    CAS  PubMed  Google Scholar 

  • Eriksson UJ, Borg LA (1991) Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 34:325–331

    CAS  PubMed  Google Scholar 

  • Eriksson UJ, Borg LA (1993) Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 42:411–419

    CAS  PubMed  Google Scholar 

  • Eriksson UJ, Siman CM (1996) Pregnant diabetic rats fed the antioxidant butylated hydroxytoluene show decreased occurrence of malformations in offspring. Diabetes 45:1497–1502

    CAS  PubMed  Google Scholar 

  • Eriksson U, Dahlstrom E, Larsson KS, Hellerstrom C (1982) Increased incidence of congenital malformations in the offspring of diabetic rats and their prevention by maternal insulin therapy. Diabetes 31:1–6

    CAS  PubMed  Google Scholar 

  • Eriksson RS, Thunberg L, Eriksson UJ (1989a) Effects of interrupted insulin treatment on fetal outcome of pregnant diabetic rats. Diabetes 38:764–772

    CAS  PubMed  Google Scholar 

  • Eriksson UJ, Bone AJ, Turnbull DM, Baird JD (1989b) Timed interruption of insulin therapy in diabetic BB/E rat pregnancy: effect on maternal metabolism and fetal outcome. Acta Endocrinol (Copenh) 120:800–810

    CAS  Google Scholar 

  • Fancourt R, Campbell S, Harvey D, Norman AP (1976) Follow-up study of small-for-dates babies. Br Med J, 1435–1437

  • Fu J, Tay SS, Ling EA, Dheen ST (2006) High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 49:1027–1038

    CAS  PubMed  Google Scholar 

  • Gammeltoft S, Fehlmann M, Van Obberghen E (1985) Insulin receptors in the mammalian central nervous system: binding characteristics and subunit structure. Biochimie 67:1147–1153

    CAS  PubMed  Google Scholar 

  • Gao Q, Gao YM (2007) Hyperglycemic condition disturbs the proliferation and cell death of neural progenitors in mouse embryonic spinal cord. Int J Dev Neurosci 25:349–357

    CAS  PubMed  Google Scholar 

  • Georgieff MK (2006) The effect of maternal diabetes during pregnancy on the neurodevelopment of offspring. Minn Med 89:44–47

    PubMed  Google Scholar 

  • Ghez C, Fahn S (1985) The cerebellum, in, Principles of neural science, 2nd edn New York: Elsevier

  • Goddard DR, Berry M, Butt AM (1999) In vivo actions of fibroblast growth factor-2 and insulin-like growth factor-I on oligodendrocyte development and myelination in the central nervous system. J Neurosci Res 57:74–85

    CAS  PubMed  Google Scholar 

  • Hagay ZJ, Weiss Y, Zusman I, Peled-Kamar M, Reece EA, Eriksson UJ, Groner Y (1995) Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol 173:1036–1041

    CAS  PubMed  Google Scholar 

  • Hami J, Sadr-Nabavi A, Sankian A, Balali-Mood M, Haghir H (2012) The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus. Brain Struct Funct. 2013;218(1):73–84

    Google Scholar 

  • Harvey D, Prince J, Bunton J, Parkinson C, Campbell S (1982) Abilities of children who were small-forgestational-age babies. Pediatrics 69:296–300

    CAS  PubMed  Google Scholar 

  • Haworth JC, McRae KN, Dilling LA (1976) Prognosis of infants of diabetic mothers in relation to neonatal hypoglycaemia. Dev Med Child Neurol 18:471–479

    CAS  PubMed  Google Scholar 

  • Hayter AL, Langdon DW, Ramnani N (2007) Cerebellar contributions to working memory. NeuroImage 36:943–954

    CAS  PubMed  Google Scholar 

  • Higgins M, Mc Auliffe F (2010) A review of maternal and fetal growth factors in diabetic pregnancy. Curr Diabetes Rev 6:116–125

    CAS  PubMed  Google Scholar 

  • Hill JM, Lesniak MA, Pert CB, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17:1127–1138

    CAS  PubMed  Google Scholar 

  • Hodge RD, D’Ercole AJ, O’Kusky JR (2004) Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci 24:10201–10210

    CAS  PubMed  Google Scholar 

  • Hoppenbrouwers SS, Schutter DJ, Fitzgerald PB, Chen R, Daskalakis ZJ (2008) The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev 59:185–200

    CAS  PubMed  Google Scholar 

  • Ircha G, Zawodniak-Szałapska M, Cypryk K, Wilczyński J (1999) Prospective neurological analysis of development of children of mothers with IDDM. Ginekol Pol 70:795–799

    CAS  PubMed  Google Scholar 

  • Jawerbaum A, White V (2010) Animal models in diabetes and pregnancy. Endocr Rev 31:680–701

    PubMed  Google Scholar 

  • Kainer F, Prechtl HF, Engele H, Einspieler C (1997) Assessment of the quality of general movements in fetuses and infants of women with type-I diabetes mellitus. Early Hum Dev 50:13–25

    CAS  PubMed  Google Scholar 

  • Kar S, Chabot JG, Quirion R (1993) Quantitative autoradiographic localization of [125I]insulin-like growth factor I, [125I]insulin-like growth factor II, and [125I]insulin receptor binding sites in developing and adult rat brain. J Comp Neurol 333:375–397

    CAS  PubMed  Google Scholar 

  • Karunanayake EH, Hearse DJ, Mellows G (1976) Streptozotocin: its excretion and metabolism in the rat. Diabetologia 12:483–488

    CAS  PubMed  Google Scholar 

  • Kern JK (2002) The Possible role of the cerebellum in autism/PDD: disruption of a multisensory feedback loop. Med Hypoth 59:255–260

    CAS  Google Scholar 

  • Kervran A, Guillaume M, Jost A (1978) The endocrine pancreas of the fetus from diabetic pregnant rat. Diabetologia 15:387–393

    CAS  PubMed  Google Scholar 

  • Klugmann M, Schwab MH, Puhlhofer A, Schneider A, Zimmermann F, Griffiths IR, Nave KA (1997) Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18:59–70

    CAS  PubMed  Google Scholar 

  • Konarski JK, McIntyre RS, Grupp LA, Kennedy SH (2005) Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci 30:178–186

    PubMed  Google Scholar 

  • Kruis T, Klammt J, Galli-Tsinopoulou A, Wallborn T, Schlicke M, Muller E, Kratzsch J, Korner A, Odeh R, Kiess W et al (2010) Heterozygous mutation within a kinase-conserved motif of the insulin-like growth factor I receptor causes intrauterine and postnatal growth retardation. J Clin Endocrinol Metab 95:1137–1142

    CAS  PubMed  Google Scholar 

  • Lapolla A, Dalfra MG, Fedele D (2005) Insulin therapy in pregnancy complicated by diabetes: are insulin analogs a new tool? Diabetes Metab Res Rev 21:241–252

    CAS  PubMed  Google Scholar 

  • Lindsay RS, Westgate JA, Beattie J, Pattison NS, Gamble G, Mildenhall LF, Breier BH, Johnstone FD (2007) Inverse changes in fetal insulin-like growth factor (IGF)-1 and IGF binding protein-1 in association with higher birth weight in maternal diabetes. Clin Endocrinol (Oxf) 66:322–328

    CAS  Google Scholar 

  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  • Liu W, Ye P, O’Kusky JR, D’Ercole AJ (2009) Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J Neurosci Res 87:2821–2832

    CAS  PubMed  Google Scholar 

  • Loeken MR (2005) Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet 135C:77–87

    PubMed  Google Scholar 

  • Lopes CD, Sinigaglia-Coimbra R, Mazzola J, Camano L, Mattar R (2011) Neurofunctional evaluation of young male offspring of rat dams with diabetes induced by streptozotocin ISRN endocrinology

  • Lowe WL, Boyd FT, Clarke DW, Raizada MK, Hart C, LeRoith D (1986) Development of brain insulin receptors: structural and functional studies of insulin receptors from whole brain and primary cell cultures. Endocrinology 119:25–35

    CAS  PubMed  Google Scholar 

  • Marks JL, Porte D Jr, Stahl WL, Baskin DG (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127:3234–3236

    CAS  PubMed  Google Scholar 

  • Marks JL, Porte D Jr, Baskin DG (1991) Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol 5:1158–1168

    CAS  PubMed  Google Scholar 

  • Middlenton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–451

    Google Scholar 

  • Mozell RL, McMorris FA (1991) Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures. J Neurosci Res 30:382–390

    CAS  PubMed  Google Scholar 

  • Mulder EJH, Visser GHA, Morssink P, de Vries JIP (1991) Growth and motor development in fetuses of women with type-1 diabetes. III. First trimester quality of fetal movement patterns. Early Hum Dev 25:117–133

    CAS  PubMed  Google Scholar 

  • Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV,Torres-Aleman I (2011) Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci

  • Nakae J, Kido Y, Accili D (2001) Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 22:818–835

    CAS  PubMed  Google Scholar 

  • Navarro I, Leibush B, Moon TW, Plisetskaya EM, Banos N, Mendez E, Planas JV, Gutierrez J (1999) Insulin, insulin-like growth factor-I (IGF-I) and glucagon: the evolution of their receptors. Comp Biochem Physiol B Biochem Mol Biol 122:137–153

    CAS  PubMed  Google Scholar 

  • Nelson CA, Wewerka S, Thomas KM, Tribby-Walbridge S, deRegnier R, Georgieff M (2000) Neurocognitive sequelae of infants of diabetic mothers. Behav Neurosci 114:950–956

    CAS  PubMed  Google Scholar 

  • Nelson TJ, Sun MK, Hongpaisan J, Alkon DL (2008) Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 585:76–87

    CAS  PubMed  Google Scholar 

  • Nguon K, Ladd B, Baxter MG, Sajdel-Sulkowska EM (2005) Sexual dimorphism in cerebellar structure, function, and response to environmental perturbations. Prog Brain Res 148:341–351

    CAS  PubMed  Google Scholar 

  • Ornoy A (2005) Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev 3:104–113

    PubMed  Google Scholar 

  • Ornoy A, Ratzon N, Greenbaum C, Peretz E, Soriano D, Dulitzky M (1998) Neurobehaviour of school age children born to diabetic mothers. Arch Dis Child Fetal Neonatal Ed 79:F94–F99

    CAS  PubMed  Google Scholar 

  • Ornoy A, Ratzon N, Greenbaum C, Wolf A, Dulitzky M (2001) School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J Pediatr Endocrinol Metab 14(Suppl 1):681–689

    PubMed  Google Scholar 

  • Parker G, Brotchie H (2010) Gender differences in depression. Int Rev Psychiatry (Abingdon, England) 22:429–436

    Google Scholar 

  • Persaud OD (2007) Maternal diabetes and the consequences for her offspring. J Develop Disab 1:101–134

    Google Scholar 

  • Petersen MB, Pedersen SA, Greisen G, Pedersen JF, Mølsted-Pedersen L (1988) Early growth delay in diabetic pregnancy: relation to psychomotor development at age 4. Br Med J (Clin Res Ed) 296:598–600

    CAS  Google Scholar 

  • Pettitt DJ, Bennett PH (1995) Long-term outcome of infant of diabetic mothers. In: Reece AE, Coustan DR (eds) Diabetes mellitus in pregnancy. Churchill Livingstone, New York, pp 379–388

    Google Scholar 

  • Phelan SA, Ito M, Loeken MR (1997) Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes 46:1189–1197

    CAS  PubMed  Google Scholar 

  • Pitkin RM, Van Orden DE, Reynolds WA (1970) Plasma insulin response and glucose tolerance in pregnant rhesus monkeys. Endocrinology 86:435–437

    CAS  PubMed  Google Scholar 

  • Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65

    CAS  PubMed  Google Scholar 

  • Popken GJ, Hodge RD, Ye P, Zhang J, Ng W, O’Kusky JR, D’Ercole AJ (2004) In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur J Neurosci 19:2056–2068

    PubMed  Google Scholar 

  • Pulford BE, Ishii DN (2001) Uptake of circulating insulin-like growth factors (IGFs) into cerebrospinal fluid appears to be independent of the IGF receptors as well as IGF-binding proteins. Endocrinology 142:213–220

    CAS  PubMed  Google Scholar 

  • Ratzon N, Greenbaum C, Dulitzky M, Ornoy A (2000) Comparison of the motor development of school-age children born to mothers with and without diabetes mellitus. Phys Occup Ther Pediatr 20:43–57

    CAS  PubMed  Google Scholar 

  • Razay G, Wilcock GK (1994) Hyperinsulinaemia and Alzheimer’s disease. Age Aging 23:36–39

    Google Scholar 

  • Reinhardt RR, Bondy CA (1994) Insulin-like growth factors cross the blood-brain barrier. Endocrinology 135:1753–1761

    CAS  PubMed  Google Scholar 

  • Riikonen R (2006) Insulin-like growth factor delivery across the blood-brain barrier. Potential use of IGF-1 as a drug in child neurology. Chemotherapy 52:279–281

    CAS  PubMed  Google Scholar 

  • Rizzo T, Freinkel N, Metzger BE, Hatcher R, Burns WJ, Barglow P (1990) Correlations between antepartum maternal metabolism and newborn behavior. Am J Obstet Gynecol 163:1458–1464

    CAS  PubMed  Google Scholar 

  • Rizzo T, Metzger BE, Burns WJ, Burns K (1991) Correlations between antepartum maternal metabolism and child intelligence. N Engl J Med 325:911–916

    CAS  PubMed  Google Scholar 

  • Rizzo TA, Ogata ES, Dooley SL, Metzger BE, Cho NH (1994) Perinatal complications and cognitive development in 2- to 5-year-old children of diabetic mothers. Am J Obstet Gynecol 171:706–713

    CAS  PubMed  Google Scholar 

  • Rizzo TA, Dooley SL, Metzger BE, Cho NH, Ogata ES, Silverman BL (1995) Prenatal and perinatal influences on long-term psychomotor development in offspring of diabetic mothers. Am J Obstet Gynecol 173(17):1753–1758

    CAS  PubMed  Google Scholar 

  • Rizzo TA, Silverman BL, Metzger BE, Cho NH (1997) Behavioral adjustment in children of diabetic mothers. Acta Paediatr 86:969–974

    CAS  PubMed  Google Scholar 

  • Rucklidge JJ (2010) The Gender differences in attention-deficit/hyperactivity disorder. Psychiatr Clin N Am 33:357–373

    Google Scholar 

  • Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26:916–943

    CAS  PubMed  Google Scholar 

  • Salehi Z, Mashayekhi F, Naji M (2008) Insulin like growth factor-1 and insulin like growth factor binding proteins in the cerebrospinal fluid and serum from patients with Alzheimer’s disease. Biofactors 33:99–106

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain Res 129:290–292

    Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain Res 121:561–579

    Google Scholar 

  • Schmahmann JD, Loeber RT, Marjani J, Hurwitz AS (1998) Topographic organization of cognitive function in the human cerebellum. A meta-analysis of functional imaging studies. NeuroImage 7:S721

    Google Scholar 

  • Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872

    CAS  PubMed  Google Scholar 

  • Schutter DJ, van Honk J (2006) An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. NeuroImage 33:1227–1231

    PubMed  Google Scholar 

  • Schwartz R, Teramo KA (2000) Effects of diabetic pregnancy on the fetus and newborn. Semin Perinatol 24:120–135

    CAS  PubMed  Google Scholar 

  • Sells CJ, Robinson NM, Brown Z, Knopp RH (1994) Long-term developmental follow-up of infants of diabetic mothers. J Pediatr 125:S9–S17

    CAS  PubMed  Google Scholar 

  • Shin BC, Fujikura K, Suzuki T, Tanaka S, Takata K (1997) Glucose transporter GLUT3 in the rat placental barrier: a possible machinery for the transplacental transfer of glucose. Endocrinology 138:3997–4004

    CAS  PubMed  Google Scholar 

  • Siman CM, Eriksson UJ (1997a) Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats. Diabetologia 40:1416–1424

    CAS  PubMed  Google Scholar 

  • Siman CM, Eriksson UJ (1997b) Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes 46:1054–1061

    CAS  PubMed  Google Scholar 

  • Singh BS, Westfall TC, Devaskar SU (1997) Maternal diabetes-induced hyperglycemia and acute intracerebral hyperinsulinism suppress fetal brain neuropeptide Y concentrations. Endocrinology 138:963–969

    CAS  PubMed  Google Scholar 

  • Sivan E, Reece EA, Wu YK, Homko CJ, Polansky M, Borenstein M (1996) Dietary vitamin E prophylaxis and diabetic embryopathy: morphologic and biochemical analysis. Am J Obstet Gynecol 175:793–799

    CAS  PubMed  Google Scholar 

  • Som S, Basu S, Mukherjee D, Deb S, Choudhury PR, Mukherjee S, Chatterjee SN, Chatterjee IB (1981) Ascorbic acid metabolism in diabetes mellitus. Metabolism 30:572–577

    CAS  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares RXJX, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease - is this type 3 diabetes? J Alzheimer’s Disease 7:63–80

    CAS  Google Scholar 

  • Stehbens JA, Baker GL, Kitchell M (1977) Outcome at ages 1, 3, and 5 years of children born to diabetic women. Am J Obstet Gynecol 127:408–413

    CAS  PubMed  Google Scholar 

  • Stenninger E, Flink R, Eriksson B, Sahlen C (1998) Long-term neurological dysfunction and neonatal hypoglycaemia after diabetic pregnancy. Arch Dis Child Fetal Neonatal Ed 79:F174–F179

    CAS  PubMed  Google Scholar 

  • Styrud J, Thunberg L, Nybacka O, Eriksson UJ (1995) Correlations between maternal metabolism and deranged development in the offspring of normal and diabetic rats. Pediatr Res 37:343–353

    CAS  PubMed  Google Scholar 

  • Suzuki N, Svensson K, Eriksson UJ (1996) High glucose concentration inhibits migration of rat cranial neural crest cells in vitro. Diabetologia 39:401–411

    CAS  PubMed  Google Scholar 

  • Swinny JD, van der Want JJL, Gramsbergen A (2005) Cerebellar development and plasticity: Perspectives for motor coordination strategies, for motor skills, and for therapy. Neural Plasticity 12:153

    CAS  PubMed  Google Scholar 

  • Takata K, Fujikura K, Shin BC (1997) Ultrastructure of the rodent placental labyrinth: a site of barrier and transport. J Reprod Develop 43:13–24

    Google Scholar 

  • Tanaka M, Sawada M, Yoshida S, Hanaoka F, Marunouchi T (1995) Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures. Neurosci Lett 199:37–40

    CAS  PubMed  Google Scholar 

  • Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130:2646–2660

    PubMed  Google Scholar 

  • Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD (2007) The cerebellum and emotional experience. Neuropsychologia 45:1331–1341

    PubMed  Google Scholar 

  • Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E et al (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512

    CAS  PubMed  Google Scholar 

  • Van Lieshout RJ, Voruganti LP (2008) Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci 33:395–404

    PubMed  Google Scholar 

  • Venkatasubramanian G, Chittiprol S, Neelakantachar N, Naveen MN, Thirthall J, Gangadhar BN, Shetty KT (2007) Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry 164:1557–1560

    PubMed  Google Scholar 

  • Viana M, Herrera E, Bonet B (1996) Teratogenic effects of diabetes mellitus in the rat. Prevention with vitamin E. Diabetologia 39:1041–1046

    CAS  PubMed  Google Scholar 

  • Wallborn T, Wuller S, Klammt J, Kruis T, Kratzsch J, Schmidt G, Schlicke M, Muller E, van de Leur HS, Kiess W et al (2010) A heterozygous mutation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J Clin Endocrinol Metab 95:2316–2324

    CAS  PubMed  Google Scholar 

  • Wentzel P, Thunberg L, Eriksson UJ (1997) Teratogenic effect of diabetic serum is prevented by supplementation of superoxide dismutase and N-acetylcysteine in rat embryo culture. Diabetologia 40:7–14

    CAS  PubMed  Google Scholar 

  • Yamano T, Shimada M, Yoshiki F, Kawasaki H, Onaga A (1986) quantitative synaptic changes on purkinjie cell dendritic spines of rats born from streptozotocin-induced diabetic mothers. Brain Dev 8:269–273

    CAS  PubMed  Google Scholar 

  • Yamashita Y, Kawano Y, Kuriya N, Murakami Y, Matsuishi T, Yoshimatsu K, Kato H (1996) Intellectual development of offspring of diabetic mothers. Acta Paediatr 85:1192–1196

    CAS  PubMed  Google Scholar 

  • Yssing M (1975) Long-term prognosis of children born to mothers diabetic when pregnant. In: Camerini-Davalos RA, Cole HS (eds) Early diabetes in early life. Academic, New York, pp 575–586

    Google Scholar 

  • Zaia A, Piantanelli L (2000) Insulin receptors in the brain cortex of aging mice. Mech Ageing Dev 113:227–232

    CAS  PubMed  Google Scholar 

  • Zemva J, Schubert M (2011) Central insulin and insulin-like growth factor-1 signaling - implications for diabetes associated dementia. Curr Diabetes Rev

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    CAS  PubMed  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902

    CAS  PubMed  Google Scholar 

  • Zhao WQ, Chen H, Quon MJ, Alkon DL (2004) Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 490:71–81

    CAS  PubMed  Google Scholar 

  • Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM (2006) Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 84:1–14

    PubMed  Google Scholar 

  • Zhou J, Wang L, Ling S, Zhang X (2007) Expression changes of growth-associated protein-43 (GAP-43) and mitogen-activated protein kinase phosphatase-1 (MKP-1) and in hippocampus of streptozotocin-induced diabetic cognitive impairment rats. Exp Neurol 206:201–208

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully thank Dr. Nicola Palomero‐Gallagher for her helpful comments. Special thanks are extended to Mr. Hossein Nomani for his technical assistance. This work was supported by the grant No. 88631 from Mashhad University of Medical Sciences (MUMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghir, H., Rezaee, AAR., Sankian, M. et al. The effects of induced type-I diabetes on developmental regulation of insulin & insulin like growth factor-1 (IGF-1) receptors in the cerebellum of rat neonates. Metab Brain Dis 28, 397–410 (2013). https://doi.org/10.1007/s11011-013-9386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9386-2

Keywords

Navigation