Skip to main content

Advertisement

Log in

Acetyl-L-carnitine improves cognitive functions in severe hepatic encephalopathy: a randomized and controlled clinical trial

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of ALC treatment on cognitive functions in patients with severe hepatic encephalopathy. This was a randomized, double-blind, placebo-controlled study. 61 patients with severe hepatic encephalopathy were recruited to the study. The 2 groups received either 2 g ALC twice a day (n = 30) or placebo (n = 30) for 90 days. Clinical and laboratory assessment, psychometric tests and automated electroencephalogram (EEG) analysis were performed for all patients. At the end of the study period, between the 2 groups we observed a significant difference in Everyday Memory Questionnaire −23.9 vs 4.4 (p < 0.001), Logical Memory (Paragraph recall) test 22.3 vs 0.7 (p < 0.001), Trail Making Test A −7.5 vs −2.6 (p < 0.001), Trail Making Test B −10.5 vs −3.1 (p < 0.001), Controlled Oral Word Association Test 4.2 vs 0.5 (p < 0.001), Hooper test 2.6 vs 0.1 (p < 0.05), Judgement of line orientation 2.8 vs 0.3 (p < 0.001), Digit Cancellation time −24.5 vs −2.4 (p < 0.001), NH +4 30.5 vs 13.5 (p < 0.001), prothrombin time 2 vs 2.4 (p < 0.05), alanine transaminase −10.7 vs −13.6 (p < 0.001). 88% of patients treated with ALC vs 72% of patients treated with placebo showed a significant improvement in EEG. The improvement of cognitive deficits, the reduction of ammonia, and the modification of EEG in patients treated with ALC suggest that ALC could represent a new tool in the treatment of severe hepatic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal MF (1993) Neurochemical aspects of aging in primates. Neurobiol Aging 14:707–709. doi:10.1016/0197-4580(93)90080-U

    Article  PubMed  CAS  Google Scholar 

  • Bélanger M, Desjardins P, Chatauret N, Butterworth RF (2002) Loss of expression of glial fibrillary acidic protein in acute hyperammonemia. Neurochem Int 41:155–160. doi:10.1016/S0197-0186(02)00037-2

    Article  PubMed  Google Scholar 

  • Benton AL (1994) Neuropsychological assessment. Annu Rev Psychol 45:1–23. doi:10.1146/annurev.ps.45.020194.000245

    Article  PubMed  CAS  Google Scholar 

  • Binienda ZK (2003) Neuroprotective effects of L-carnitine in induced mitochondrial dysfunction. Ann N Y Acad Sci 993:289–295. doi:10.1111/j.1749-6632.2003.tb07536.x

    Article  PubMed  CAS  Google Scholar 

  • Bremer J (1983) Carnitine-metabolism and functions. Physiol Rev 63:1420–1480, PMid:6361812

    PubMed  CAS  Google Scholar 

  • Brooks JO 3rd, Yesavage JA, Carta A, Bravi D (1998) Acetyl L-carnitine slows decline in younger patients with Alzheimer's disease: a reanalysis of a double-blind, placebo-controlled study using the trilinear approach. Int Psychogeriatr 10:193–203. doi:10.1017/S1041610298005304

    Article  PubMed  Google Scholar 

  • Butterworth RF (2001) Neurotransmitter dysfunction in hepatic encephalopathy: new approaches and new findings. Metab Brain Dis 16:55–65. doi:10.1023/A:1011614528751

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227. doi:10.1023/A:1021989230535

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF, Giguère JF, Michaud J, Lavoie J, Layrargues GP (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 6:1–12. doi:10.1007/BF02833598

    Article  PubMed  CAS  Google Scholar 

  • Da Fonseca-Wollheim F (1973) Direkte plasmaammoniakbestimmung ohne Enteiweissung. Z Klin Chem Biochem 11:426–431

    Google Scholar 

  • Desjardins P, Todd KG, Hazell AS, Butterworth RF (1999) Increased "peripheral-type" benzodiazepine receptor sites and mRNA in thalamus of thiamine-deficient rats. Neurochem Int 35:363–369. doi:10.1016/S0197-0186(99)00082-0

    Article  PubMed  CAS  Google Scholar 

  • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285:2486–2497. doi:10.1001/jama.285.19.2486

    Article  Google Scholar 

  • Felipo V, Miñana MD, Cabedo H, Grisolía S (1994) L-carnitine increases the affinity of glutamate for quisqualate receptors and prevents glutamate neurotoxicity. Neurochem Res 19:373–377. doi:10.1007/BF00971588

    Article  PubMed  CAS  Google Scholar 

  • Felipo V, Hermenegildo C, Montoliu C, Llansola M, Miñana MD (1998) Neurotoxicity of ammonia and glutamate: molecular mechanisms and prevention. Neurotoxicology 19:675–681, PMid:9745928

    PubMed  CAS  Google Scholar 

  • Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q (2010) Role of carnitine in disease. Nutr Metab (Lond) 7:30. doi:10.1186/1743-7075-7-30

    Article  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini Mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. doi:10.1016/0022-3956(75)90026-6

    Article  PubMed  CAS  Google Scholar 

  • Franklin GM, Heaton RK, Nelson LM, Filley CM, Seibert C (1988) Correlation of neuropsychological and MRI findings in chronic/progressive multiple sclerosis. Neurology 38:1826–1829, PMid:3194059

    PubMed  CAS  Google Scholar 

  • Gregorios JB, Mozes LW, Norenberg MD (1985) Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J Neuropathol Exp Neurol 44:404–414. doi:10.1097/00005072-198507000-00004

    Article  PubMed  CAS  Google Scholar 

  • Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT, Vinarsky V, Bartholomew JC, Ames BN (2002) Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci U S A 99:1870–1875. doi:10.1073/pnas.261708898

    Article  PubMed  CAS  Google Scholar 

  • Harper C, Butterworth RF (1997) Nutritional and metabolic disorders. In: Lantos P, Graham D (eds) Greenfield's neuropathology, 6th edn. Edward Arnold, Cambridge, pp 601–655

    Google Scholar 

  • Häussinger D, Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57:1156–1165. doi:10.1136/gut.2007.122176

    Article  PubMed  Google Scholar 

  • Häussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038. doi:10.1016/S0168-8278(00)80110-5

    Article  PubMed  Google Scholar 

  • Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88:657–667. doi:10.1046/j.1471-4159.2003.02195.x

    Article  PubMed  CAS  Google Scholar 

  • Hooper HE (1983) Hooper visual organization test. WPS

  • Jover R, Rodrigo R, Felipo V, Insausti R, Sáez-Valero J, García-Ayllón MS, Suárez I, Candela A, Compañ A, Esteban A, Cauli O, Ausó E, Rodríguez E, Gutiérrez A, Girona E, Erceg S, Berbel P, Pérez-Mateo M (2006) Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: a model of hepatic encephalopathy in cirrhosis. Hepatology 43:1257–1266. doi:10.1002/hep.21180

    Article  PubMed  CAS  Google Scholar 

  • Malaguarnera M, Pistone G, Astuto M, Dell'Arte S, Finocchiaro G, Lo Giudice E, Pennisi G (2003) L-Carnitine in the treatment of mild or moderate hepatic encephalopathy. Dig Dis 21(3):271–275. doi:10.1159/000073347 PMid:14571103

    Google Scholar 

  • Malaguarnera M, Pistone G, Elvira R, Leotta C, Scarpello L, Liborio R (2005) Effects of L-carnitine in patients with hepatic encephalopathy. World J Gastroenterol 11(45):7197–7202

    PubMed  CAS  Google Scholar 

  • Malaguarnera M, Pistone G, Astuto M, Vecchio I, Raffaele R, Lo Giudice E, Rampello L (2006) Effects of L-acetylcarnitine on cirrhotic patients with hepatic coma: randomized double-blind, placebo-controlled trial. Dig Dis Sci 51:2242–2247. doi:10.1007/s10620-006-9187-0, PMid:17080254

    Article  PubMed  CAS  Google Scholar 

  • Malaguarnera M, Cammalleri L, Gargante MP, Vacante M, Colonna V, Motta M (2007) L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: a randomized and controlled clinical trial. Am J Clin Nutr 86(6):1738–1744

    PubMed  CAS  Google Scholar 

  • Malaguarnera M, Gargante MP, Cristaldi E, Vacante M, Risino C, Cammalleri L, Pennisi G, Rampello L (2008) Acetyl-L-carnitine treatment in minimal hepatic encephalopathy. Dig Dis Sci 53:3018–3025. doi:10.1007/s10620-008-0238-6

    Article  PubMed  CAS  Google Scholar 

  • Malaguarnera M, Bella R, Vacante M, Giordano M, Malaguarnera G, Gargante MP, Motta M, Mistretta A, Rampello L, Pennisi G (2011a) Acetyl-L-carnitine reduces depression and improves quality of life in patients with minimal hepatic encephalopathy. Scand J Gastroenterol 46(6):750–759. doi:10.3109/00365521.2011.565067 PMid:21443422

  • Malaguarnera M, Vacante M, Giordano M, Pennisi G, Bella R, Rampello L, Malaguarnera M, Li Volti G, Galvano F (2011b) Oral acetyl-L-carnitine therapy reduces fatigue in overt hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 93(4):799–808. doi:10.3945/ajcn.110.007393 PMid:21310833

    Google Scholar 

  • Matsuoka M, Igisu H (1993) Comparison of the effects of L-carnitine, D-carnitine and acetyl-L-carnitine on the neurotoxicity of ammonia. Biochem Pharmacol 46:159–164. doi:10.1016/0006-2952(93)90360-9

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SA, Thal LJ, Amrein R (2003) Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer's disease. Int Clin Psychopharmacol 18:61–71. doi:10.1097/00004850-200303000-00001

    Article  PubMed  Google Scholar 

  • Neary JT, Norenberg LO, Gutierrez MP, Norenberg MD (1987) Hyperammonemia causes altered protein phosphorylation in astrocytes. Brain Res 437:161–164. doi:10.1016/0006-8993(87)91538-1

    Article  PubMed  CAS  Google Scholar 

  • Peluso G, Barbarisi A, Savica V, Reda E, Nicolai R, Benatti P, Calvani M (2000) Carnitine: an osmolyte that plays a metabolic role. J Cell Biochem 80:1–10. doi:10.1002/1097-4644(20010101)80:1<1::AID-JCB10>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Levine J, McClure RJ (2000) Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 5:616–632. doi:10.1038/sj.mp.4000805

    Article  PubMed  CAS  Google Scholar 

  • Poveda MJ, Bernabeu A, Concepción L, Roa E, de Madaria E, Zapater P, Pérez-Mateo M, Jover R (2010) Brain edema dynamics in patients with overt hepatic encephalopathy A magnetic resonance imaging study. NeuroImage 52:481–487. doi:10.1016/j.neuroimage.2010.04.260

    Article  PubMed  Google Scholar 

  • Pugh RN, Murray-Lyon IM, Dawson JL, Petroni MC, Williams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60:646–649. doi:10.1002/bjs.1800600817

    Article  PubMed  CAS  Google Scholar 

  • Qureshi K, Rao KV, Qureshi IA (1998) Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res 23:855–861. doi:10.1023/A:1022406911604

    Article  PubMed  CAS  Google Scholar 

  • Rao KV, Mawal YR, Qureshi IA (1997) Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Neurosci Lett 224:83–86. doi:10.1016/S0304-3940(97)13476-0

    Article  PubMed  CAS  Google Scholar 

  • Ratnakumari L, Qureshi IA, Butterworth RF (1993) Effect of L-carnitine on cerebral and hepatic energy metabolites in congenitally hyperammonemic sparse-fur mice and its role during benzoate therapy. Metabolism 42:1039–1046. doi:10.1016/0026-0495(93)90020-O

    Article  PubMed  CAS  Google Scholar 

  • Reitan RM, Wolfson D (1993) The Halstead-Reitan: neuropsychological test battery: theory and clinical interpretation. Neuropsychology Press, Tucson

    Google Scholar 

  • Spagnoli A, Lucca U, Menasce G, Bandera L, Cizza G, Forloni G, Tettamanti M, Frattura L, Tiraboschi P, Comelli M et al (1991) Long-term acetyl-L-carnitine treatment in Alzheimer's disease. Neurology 41:1726–1732

    PubMed  CAS  Google Scholar 

  • Sunderland A, Harris JE, Baddeley AD (1983) Do laboratory tests predict A neuropsychological study. J Verbal Learning Verbal Behav 22:341–357. doi:10.1016/S0022-5371(83)90229-3

    Article  Google Scholar 

  • Thal LJ, Calvani M, Amato A, Carta A (2000) A 1-year controlled trial of acetyl-l-carnitine in early-onset AD. Neurology 55:805–810

    PubMed  CAS  Google Scholar 

  • Van Der Rijt C, Schalm SW (1985) Quantitative EEG analysis and survival in liver disease. Electroencephalogr Clin Neurophysiol 61:502–504. doi:10.1016/0013-4694(85)90968-X

    Article  PubMed  Google Scholar 

  • Virmani A, Binienda Z (2004) Role of carnitine esters in brain neuropathology. Mol Aspects Med 25:533–549. doi:10.1016/j.mam.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  • Voigt M, Conn H (1995) Hepatic encephalopathy. In: Robson SC, Trey C, Kirsch RE (eds) Diagnosis and management of liver disease. Chapman & Hall, London, pp 140–147, Chapter 13

    Google Scholar 

  • Wechsler D (1945) A standardized Memory Scale for Clinical use. J Psychol 87:95

    Google Scholar 

  • World Medical Association Declaration of Helsinki (1997) Recommendations guiding physicians in biomedical research involving human subjects. JAMA 277:925–926. doi:10.1001/jama.277.11.925

    Article  Google Scholar 

  • Wright G, Jalan R (2007) Ammonia and inflammation in the pathogenesis of hepatic encephalopathy: Pandora's box? Hepatology 46:291–294. doi:10.1002/hep.21843

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors disclose no conflicts.

Funding

This clinical trial was supported by a grant from MURST (Ministero dell’Università e Ricerca Scientifica e Tecnologica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Malaguarnera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malaguarnera, M., Vacante, M., Motta, M. et al. Acetyl-L-carnitine improves cognitive functions in severe hepatic encephalopathy: a randomized and controlled clinical trial. Metab Brain Dis 26, 281–289 (2011). https://doi.org/10.1007/s11011-011-9260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9260-z

Keywords

Navigation