Skip to main content

Advertisement

Log in

Oral zinc augmentation with vitamins A and D increases plasma zinc concentration: Implications for burden of disease

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

A study evaluating zinc supplementation in patients with Alzheimer's disease yielded variable zinc plasma levels in spite of positive cognitive and physiological results. In an attempt to raise and sustain plasma zinc levels, a single patient was given 15 mg zinc/day with various combinations of vitamins. A sustained raise in plasma zinc concentration (and therefore its potential bioavailability) was obtained only when the zinc was augmented with both vitamins A and D (in RDA concentrations). In order to verify these results, a follow-up study was conducted in 70 volunteers. Seven groups of 10 healthy subjects received various combinations of zinc and the two vitamins A and D, namely: zinc, vitamin A, vitamin D, zinc plus vitamin A, zinc plus vitamin D, vitamins A and D, and zinc plus vitamins A and D. Plasma zinc levels were determined at baseline, 3 weeks and 6 weeks. Plasma zinc levels increased significantly (p < 0.02) from 11.82 (±2.60) to 13.32 (±3.04) μm/L only in the group receiving the combination of zinc and vitamins A and D. This novel method of increasing plasma zinc levels by the augmentation of vitamins A and D may have implications for the reduction of burden of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antoniou LD, Shalhoub RJ, Elliot S (1981) Zinc tolerance tests in chronic uremia. Clin Nephrol 16:181–187

    PubMed  CAS  Google Scholar 

  • Baly DL, Golub MS, Gershwin ME, Hurley LS (1984) Studies of marginal zinc deprivation in rhesus monkeys. III. Effects on vitamin A metabolism. Am J Clin Nutr 40:199–207

    PubMed  CAS  Google Scholar 

  • Berzin NI, Bauman VK (1987) Vitamin-A-dependent zinc-binding protein and intestinal absorption of Zn in chicks. Br J Nutr 57:255–268

    Article  PubMed  CAS  Google Scholar 

  • Chausmer AB, Ward G, Zears R (1980) Influence of cholecalciferol on tissue zinc homeostasis in the rat. Nutr Metab 24:314–323

    Article  PubMed  CAS  Google Scholar 

  • Czernichow S, Galan P, Hercberg S (2005) Antioxidant supplements for prevention of gastrointestinal cancers. Lancet 365(9458):470–471

    PubMed  CAS  Google Scholar 

  • Darwiche N, Celli G, De Luca LM (1994) Specificity of retinoid receptor gene expression in mouse cervical epithelia. Endocrinology 134:2018–2025

    Article  PubMed  CAS  Google Scholar 

  • Erreger K, Traynelis SF (2005) Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J Physiol 2005 Sep 15; [Epub ahead of print]

  • Fleet JC, Turnbull AJ, Bourcier M, Wood RJ (1993). Vitamin D – sensitive and quinacrine-sensitive zinc transport in human intestinal cell line Caco-2. Am J Physiol 264:G1037–1035

    PubMed  CAS  Google Scholar 

  • Harada H, Miki R, Masushige S, Kato S (1995) Gene expression of retinoic acid receptors, retnoid-X receptors, and cellular retinol-binding protein I in bone and its regulation by vitamin A. Endocrinology 136:5329–5335

    Article  PubMed  CAS  Google Scholar 

  • Harvey BH, McEwen BS, Stein DJ (2003) Neurobiology of antidepressant withdrawal: implications for the longitudinal outcome of depression. Biol Psychiatry 54:1105–1117

    Article  PubMed  CAS  Google Scholar 

  • Helming L, Bose J, Ehrchen J, Schiebe S, Frahm T, Geffers R, Probst-Kepper, M, Balling R, Lengeling A (2005) 1α,25-dihydroxyvitamin D3 is a potent suppressor of interferon-γ mediated macrophage activation. Blood 106:4351–4358

    Article  PubMed  CAS  Google Scholar 

  • Henderson LM, Brewer GJ, Dressman JB, Swidan SZ, DuRoss DJ, Adair CH, Barnett JL, Berardi RR (1996) Use of zinc tolerance test and 24-hour urinary zinc content to assess oral zinc absorption. J Am Coll Nutr 15:79–83

    PubMed  CAS  Google Scholar 

  • Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, Roussel AM, Favier A, Briancon S (2004) The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Humphries L, Vivian B, Stuart M, McClain CJ (1989) Zinc deficiency and eating disorders. J Clin Psychiatry 50:456–459

    PubMed  CAS  Google Scholar 

  • Lih-Brody L, Powell SR, Collier KP, Reddy GM, Cerchia R, Kahn E, Weissman GS, Katz S, Floyd RA, McKinley MJ, Fisher SE, Mullin GE (1996) Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig Dis Sci 41:2078–2086

    Article  PubMed  CAS  Google Scholar 

  • Maes M, D'Haese PC, Scharpé S, D'Hondt P, Cosyns P, De Broe ME (1994) Hypozincemia in depression. J Affect Disord 31:135–140

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Altamura C, Desnyder R (1997) Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in the illness. Biol Psychiatry 42:349–358

    Article  PubMed  CAS  Google Scholar 

  • Meier CA (1997) Regulation of gene expression by nuclear hormone receptors. J Recept Signal Transduct Res 17:319–35

    Article  PubMed  CAS  Google Scholar 

  • Meyer F, Galan P, Douville P, Bairati I, Kegle P, Bertrais S, Estaquio C, Hercberg S (2005) Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int J Cancer 116:182–186

    Article  PubMed  CAS  Google Scholar 

  • Moon J (1994) The role of vitamin D in toxic metal absorption: a review. J Am Coll Nutr 13:559–569

    PubMed  CAS  Google Scholar 

  • Nakajima S, Hsieh JC, MacDonald PN, Galligan MA, Haussler CA, Whitfield GK, Haussler MR (1994) The C-terminal region of the vitamin D receptor is required for high affinity binding to the vitamin D-responsive element. Mol Endocrinol 8:159–172

    Article  PubMed  CAS  Google Scholar 

  • Potocnik FCV, Van Rensburg SJ, Taljaard JJF, Emsley RA (1997) Zinc and platelet membrane microviscosity in Alzheimer's disease. The in vivo effect of zinc on platelet membranes and cognition. S Afr Med J 87:1116–1119

    PubMed  CAS  Google Scholar 

  • Reichrath J, Collins ED, Epple S, Kerber A, Norman AW, Bahmer FA (1996) Immunohistochemical detection of 1,25-dihydroxyvitamin D3 receptors (VDR) in human skin. A comparison of five antibodies. Pathol Res Pract 192:281–289

    PubMed  CAS  Google Scholar 

  • Reichrath J, Perez A, Muller SM, Chen TC, Kerber A, Bahmer FA, Holick MF (1997) Topical calcitriol (1,25-dihydroxyvitamin D3) treatment of psoriasis: an immunohistological evaluation. Acta Derm Venereol 77:268–272

    PubMed  CAS  Google Scholar 

  • Schwabe JWR, Rhodes D (1991) Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem Sci 16:291–296

    Article  PubMed  CAS  Google Scholar 

  • Szebeni J, Eskelson CD, Chvapil M (1988) The effect of zinc on iron-induced lipid peroxidation in different lipid systems including liposomes and micelles. Physiol Chem Phys Med NMR 20:205–211

    PubMed  CAS  Google Scholar 

  • Van Rensburg SJ, Potocnik FCV, Taljaard JJF (1995a) Platelet and erythrocyte membrane microviscosity in Alzheimer's disease: the effect of metals. In: Zatta P, Nicolini M (ed) Non-neuronal cells in Alzheimer's disease. World Scientific, Singapore, pp 25–37

    Google Scholar 

  • Van Rensburg SJ, Potocnik FCV, Carstens ME, Taljaard JJF (1995b) Zinc and platelet membrane microviscosity in Alzheimer's disease. The in vitro effect of zinc and aluminium on platelet membranes. Alzheimer's Research 1:41–44

    Google Scholar 

  • Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–644

    Article  PubMed  CAS  Google Scholar 

  • Wiedermann U, Chen XJ, Enerback L, Hanson LA, Kahu H, Dahlgren UI (1996) Vitamin A deficiency increases inflammatory responses. Scan J Immunol 44(6):578–584

    Article  CAS  Google Scholar 

  • World Health Organisation. Chapter 7: Preventing risks and taking action. Geneva: WHO: World Health Report 2002, pp 159–167

  • Yasmin R, Williams RM, Xu M, Noy N (2005) Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer. J Biol Chem 280:40152–40160

    Article  PubMed  CAS  Google Scholar 

  • Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT, Norton MC, Welsh-Bohmer KA, Breitner JC, Cache County Study Group (2004). Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 61:82–88

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial assistance rendered by the Western Cape branch of the Alzheimer's and Related Disorders Association (ARDA) Chairperson: Gerna Conradie, Lundbeck Pharmaceuticals, the Cape Provincial Administration, the Stellenbosch University and the Medical Research Council of South Africa. We also thank Ms MEJ Louw for doing the vitamin determinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. V. Potocnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potocnik, F.C.V., van Rensburg, S.J., Hon, D. et al. Oral zinc augmentation with vitamins A and D increases plasma zinc concentration: Implications for burden of disease. Metab Brain Dis 21, 134–142 (2006). https://doi.org/10.1007/s11011-006-9023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9023-4

Keywords

Navigation