Skip to main content
Log in

WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Background: WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. Methods: The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. Results: WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. Conclusion: Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available in a publicly accessible repository (TCGA database; https://portal.gdc.cancer.gov/).

Abbreviations

CDKN2A:

Cyclin dependent kinase inhibitor 2A

CRC:

Colorectal cancer

DEGs:

Differentially expressed genes

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HPA:

The human protein atlas

IPA:

Ingenuity pathway analysis

mRNA:

Messenger ribonucleic acid

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PCR:

Polymerase chain reaction

PLK1:

Polo like kinase 1

PPI:

Protein–protein interaction networks

PVDF:

Polyvinylidene fluoride

Rho:

Rhodopsin

RAC1:

Rac family small GTPase 1

RT-qPCR:

Real time quantitative polymerase chain reaction

shCtrl:

Empty lentivirus transfection control

shWDR12:

Knockdown WDR12

siRNA:

Small interfering RNA

TCGA:

The cancer genome atlas

TISCH:

The single cell database

UALCAN:

The University of Alabama at Birmingham cancer data analysis portal

WDR12:

WD repeat domain 12

References

  1. Keum N, Giovannucci E (2019) Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 16:713–732. https://doi.org/10.1038/s41575-019-0189-8

    Article  PubMed  Google Scholar 

  2. Grothey A, Fakih M, Tabernero J (2021) Management of BRAF-mutant metastatic colorectal cancer: a review of treatment options and evidence-based guidelines. Ann Oncol 32:959–967. https://doi.org/10.1016/j.annonc.2021.03.206

    Article  PubMed  CAS  Google Scholar 

  3. Tiwari A, Saraf S, Verma A et al (2018) Novel targeting approaches and signaling pathways of colorectal cancer: an insight. World J Gastroenterol 24:4428–4435. https://doi.org/10.3748/wjg.v24.i39.4428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Silva VR, Santos LS, Dias RB et al (2021) Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 41:1275–1313. https://doi.org/10.1002/cac2.12235

    Article  PubMed  Google Scholar 

  5. Piawah S, Venook AP (2019) Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer 125:4139–4147. https://doi.org/10.1002/cncr.32163

    Article  PubMed  Google Scholar 

  6. Nal B, Mohr E, Silva MI et al (2002) Wdr12, a mouse gene encoding a novel WD-repeat protein with a notchless-like amino-terminal domain. Genomics 79:77–86. https://doi.org/10.1006/geno.2001.6682

    Article  PubMed  CAS  Google Scholar 

  7. Neer EJ, Schmidt CJ, Nambudripad R et al (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300. https://doi.org/10.1038/371297a0

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Smith TF, Gaitatzes C, Saxena K et al (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185. https://doi.org/10.1016/s0968-0004(99)01384-5

    Article  PubMed  CAS  Google Scholar 

  9. Romes EM, Sobhany M, Stanley RE (2016) The crystal structure of the ubiquitin-like domain of ribosome assembly factor Ytm1 and characterization of its interaction with the AAA-ATPase midasin. J Biol Chem 291:882–893. https://doi.org/10.1074/jbc.M115.693259

    Article  PubMed  CAS  Google Scholar 

  10. Lewinska A, Bednarz D, Adamczyk-Grochala J et al (2017) Phytochemical-induced nucleolar stress results in the inhibition of breast cancer cell proliferation. Redox Biol 12:469–482. https://doi.org/10.1016/j.redox.2017.03.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Li JL, Chen C, Chen W et al (2020) Integrative genomic analyses identify WDR12 as a novel oncogene involved in glioblastoma. J Cell Physiol 235:7344–7355. https://doi.org/10.1002/jcp.29635

    Article  PubMed  CAS  Google Scholar 

  12. Yin Y, Zhou L, Zhan R et al (2018) Identification of WDR12 as a novel oncogene involved in hepatocellular carcinoma propagation. Cancer Manag Res 10:3985–3993. https://doi.org/10.2147/CMAR.S176268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sun Y, Liu M, Yang B et al (2008) Role of siRNA silencing of MMP-2 gene on invasion and growth of laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 265:1385–1391. https://doi.org/10.1007/s00405-008-0684-y

    Article  PubMed  Google Scholar 

  14. Barros P, Lam EW, Jordan P et al (2012) Rac1 signalling modulates a STAT5/BCL-6 transcriptional switch on cell-cycle-associated target gene promoters. Nucleic Acids Res 40:7776–7787. https://doi.org/10.1093/nar/gks571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Myant KB, Cammareri P, McGhee EJ et al (2013) ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12:761–773. https://doi.org/10.1016/j.stem.2013.04.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rohrmoser M, Hölzel M, Grimm T et al (2007) Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit. Mol Cell Biol 27:3682–3694. https://doi.org/10.1128/mcb.00172-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546. https://doi.org/10.1152/physrev.00054.2009

    Article  PubMed  CAS  Google Scholar 

  18. Pitts TM, Davis SL, Eckhardt SG et al (2014) Targeting nuclear kinases in cancer: development of cell cycle kinase inhibitors. Pharmacol Ther 142:258–269. https://doi.org/10.1016/j.pharmthera.2013.12.010

    Article  PubMed  CAS  Google Scholar 

  19. Riese U, Dahse R, Fiedler W et al (1999) Tumor suppressor gene p16 (CDKN2A) mutation status and promoter inactivation in head and neck cancer. Int J Mol Med 4:61–65. https://doi.org/10.3892/ijmm.4.1.61

    Article  PubMed  CAS  Google Scholar 

  20. Alhejaily A, Day AG, Feilotter HE et al (2014) Inactivation of the CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in follicular lymphoma and associated with poor clinical outcome. Clin Cancer Res 20:1676–1686. https://doi.org/10.1158/1078-0432.Ccr-13-2175

    Article  PubMed  CAS  Google Scholar 

  21. Kohlmeyer JL, Kaemmer CA, Pulliam C et al (2020) RABL6A Is an essential driver of MPNSTs that negatively regulates the RB1 pathway and sensitizes tumor cells to CDK4/6 inhibitors. Clin Cancer Res 26:2997–3011. https://doi.org/10.1158/1078-0432.CCR-19-2706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hagen J, Muniz VP, Falls KC et al (2014) RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner. Cancer Res 74:6661–6670. https://doi.org/10.1158/0008-5472.CAN-13-3742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li YY, Fu S, Wang XP et al (2013) Down-regulation of c9orf86 in human breast cancer cells inhibits cell proliferation, invasion and tumor growth and correlates with survival of breast cancer patients. PLoS ONE 8:e71764. https://doi.org/10.1371/journal.pone.0071764

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  24. Montalbano J, Lui K, Sheikh MS et al (2009) Identification and characterization of RBEL1 subfamily of GTPases in the Ras superfamily involved in cell growth regulation. J Biol Chem 284:18129–18142. https://doi.org/10.1074/jbc.M109.009597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Muniz VP, Askeland RW, Zhang X et al (2013) RABL6A promotes oxaliplatin resistance in tumor cells and is a new marker of survival for resected pancreatic ductal adenocarcinoma patients. Genes Cancer 4:273–284. https://doi.org/10.1177/1947601913501074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lui K, An J, Montalbano J et al (2013) Negative regulation of p53 by Ras superfamily protein RBEL1A. J Cell Sci 126:2436–2445. https://doi.org/10.1242/jcs.118117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Umesalma S, Kaemmer CA, Kohlmeyer JL et al (2019) RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. J Clin Invest 129:1641–1653. https://doi.org/10.1172/JCI123049

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kourea HP, Cordon-Cardo C, Dudas M et al (1999) Expression of p27(kip) and other cell cycle regulators in malignant peripheral nerve sheath tumors and neurofibromas: the emerging role of p27(kip) in malignant transformation of neurofibromas. Am J Pathol 155:1885–1891. https://doi.org/10.1016/S0002-9440(10)65508-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhou K, Rao J, Zhou ZH et al (2018) RAC1-GTP promotes epithelial-mesenchymal transition and invasion of colorectal cancer by activation of STAT3. Lab Invest 98:989–998. https://doi.org/10.1038/s41374-018-0071-2

    Article  PubMed  CAS  Google Scholar 

  30. Svensmark JH, Brakebusch C (2019) Rho GTPases in cancer: friend or foe? Oncogene 38:7447–7456. https://doi.org/10.1038/s41388-019-0963-7

    Article  PubMed  CAS  Google Scholar 

  31. Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6:322–327. https://doi.org/10.1016/S1470-2045(05)70168-6

    Article  PubMed  CAS  Google Scholar 

  32. Kang J, Chong SJ, Ooi VZ et al (2015) Overexpression of Bcl-2 induces STAT-3 activation via an increase in mitochondrial superoxide. Oncotarget 6:34191–34205. https://doi.org/10.18632/oncotarget.5763

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheung EC, Lee P, Ceteci F et al (2016) Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine. Genes Dev 30:52–63. https://doi.org/10.1101/gad.271130.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kotelevets L, Chastre E (2020) Rac1 signaling: from intestinal homeostasis to colorectal cancer metastasis. Cancers (Basel). https://doi.org/10.3390/cancers12030665

    Article  PubMed  Google Scholar 

  35. Liang J, Liu Q, Xia L et al (2023) Rac1 promotes the reprogramming of glucose metabolism and the growth of colon cancer cells through upregulating SOX9. Cancer Sci 114:822–836. https://doi.org/10.1111/cas.15652

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support from Shanghai Genechem Co.,Ltd and the contribution from TCGA database.

Funding

This research was funded by the Chen Xiao-ping Foundation for the Development of Science and Technology of Hubei Province, grant number CXPJJH122006-1001.

Author information

Authors and Affiliations

Authors

Contributions

TY planned the experiments and revised the manuscript. SW (Su Wen) and XH conducted the experiments. SW (Su Wen) wrote the original manuscript. SW (Su Wen), XH, LX and HZ performed an extensive literature review. KA and SW (Shuang Wu) conducted statistical analysis. JB, ZZ, XX reviewed the manuscript, revising it for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tiejun Yin.

Ethics declarations

Competing interests

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board of Shanghai Genechem Co., Ltd (protocol code GSZE0167660 and date of July 8, 2018).

Consent for publication

All the authors have read the manuscript and consented for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Huang, X., Xiong, L. et al. WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04937-x

Keywords

Navigation