Skip to main content

Advertisement

Log in

Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R et al (2021) Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 28:231–243. https://doi.org/10.1016/j.jare.2020.07.007

    Article  CAS  PubMed  Google Scholar 

  6. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C et al (2021) ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 93:312–321. https://doi.org/10.1016/j.bbi.2021.01.003

    Article  CAS  PubMed  Google Scholar 

  7. Fang J, Yuan Q, Du Z, Zhang Q, Yang L, Wang M et al (2023) Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury. Free Radic Biol Med 204:68–81. https://doi.org/10.1016/j.freeradbiomed.2023.04.014

    Article  CAS  PubMed  Google Scholar 

  8. Bai T, Li M, Liu Y, Qiao Z, Wang Z (2020) Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med 160:92–102. https://doi.org/10.1016/j.freeradbiomed.2020.07.026

    Article  CAS  PubMed  Google Scholar 

  9. Su G, Yang W, Wang S, Geng C, Guan X (2021) SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochem Biophys Res Commun 561:33–39. https://doi.org/10.1016/j.bbrc.2021.05.011

    Article  CAS  PubMed  Google Scholar 

  10. Ouyang S, You J, Zhi C, Li P, Lin X, Tan X et al (2021) Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis 12(8):782. https://doi.org/10.1038/s41419-021-04054-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu W, Liu W, Xie D, Wang Q, Xu C, Zhao H et al (2022) High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid Med Cell Longev. https://doi.org/10.1155/2022/9304383

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu LC, Cao J, Li WJ, Yang ZM, Zhao R, Zhang JR et al (2022) Ferroptosis in laryngeal squamous cell carcinoma and its regulation by M2 macrophage-derived exosomes. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 57(3):324–332. https://doi.org/10.3760/cma.j.cn115330-20210621-00361

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Yang P, Wang J, Zhang J, Ma Q, Jiang Y et al (2022) HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol 15(1):2. https://doi.org/10.1186/s13045-021-01223-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R et al (2020) Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun 11(1):6339. https://doi.org/10.1038/s41467-020-20154-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kremer DM, Nelson BS, Lin L, Yarosz EL, Halbrook CJ, Kerk SA et al (2021) GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nat Commun 12(1):4860. https://doi.org/10.1038/s41467-021-24859-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X et al (2022) Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol 56:102463. https://doi.org/10.1016/j.redox.2022.102463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang B, Xu W, Wang Y, Zhu J, Wang H, Tu J et al (2021) Identification of critical ferroptosis regulators in lung adenocarcinoma that RRM2 facilitates tumor immune infiltration by inhibiting ferroptotic death. Clin Immunol 232:108872. https://doi.org/10.1016/j.clim.2021.108872

    Article  CAS  PubMed  Google Scholar 

  18. Liu T, Zhu C, Chen X, Guan G, Zou C, Shen S et al (2022) Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance. Neuro-Oncology 24(7):1113–1125. https://doi.org/10.1093/neuonc/noac033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alborzinia H, Flórez AF, Kreth S, Brückner LM, Yildiz U, Gartlgruber M et al (2022) MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat Cancer 3(4):471–485. https://doi.org/10.1038/s43018-022-00355-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O, Mittereder L et al (2019) A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med 216(3):556–570. https://doi.org/10.1084/jem.20181776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He R, Liu B, Xiong R, Geng B, Meng H, Lin W et al (2022) Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discov 8(1):43. https://doi.org/10.1038/s41420-021-00807-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu J, Liu Q, Zhang X, Tan M, Li X, Liu P et al (2022) The interaction between STING and NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and inflammatory responses in macrophages. Cell Death Dis 13(7):653. https://doi.org/10.1038/s41419-022-05115-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma H, Dong Y, Chu Y, Guo Y, Li L (2022) The mechanisms of ferroptosis and its role in alzheimer’s disease. Front Mol Biosci 9:965064. https://doi.org/10.3389/fmolb.2022.965064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dang Y, He Q, Yang S, Sun H, Liu Y, Li W et al (2022) FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer’s disease: evidence from single-cell transcriptomic analysis. Pharmaceuticals (Basel). https://doi.org/10.3390/ph15101177

    Article  PubMed  Google Scholar 

  25. Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med 131:356–369. https://doi.org/10.1016/j.freeradbiomed.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  26. Sabatier M, Birsen R, Lauture L, Mouche S, Angelino P, Dehairs J et al (2023) C/EBPα confers dependence to fatty acid anabolic pathways and vulnerability to lipid oxidative stress-induced ferroptosis in FLT3-mutant leukemia. Cancer Discov 13(7):1720–1747. https://doi.org/10.1158/2159-8290.Cd-22-0411

    Article  CAS  PubMed  Google Scholar 

  27. Liang C, Zhang X, Yang M, Dong X (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31(51):e1904197. https://doi.org/10.1002/adma.201904197

    Article  CAS  PubMed  Google Scholar 

  28. Bashir S, Sharma Y, Elahi A, Khan F (2016) Macrophage polarization: the link between inflammation and related diseases. Inflamm Res 65(1):1–11. https://doi.org/10.1007/s00011-015-0874-1

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Liu Y, Gao Y, Shou S, Chai Y (2021) The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol 96:107791. https://doi.org/10.1016/j.intimp.2021.107791

    Article  CAS  PubMed  Google Scholar 

  30. Nelson BN, Hawkins AN, Wozniak KL (2020) Pulmonary macrophage and dendritic cell responses to cryptococcus neoformans. Front Cell Infect Microbiol 10:37. https://doi.org/10.3389/fcimb.2020.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Woo YD, Jeong D, Chung DH (2021) Development and functions of alveolar macrophages. Mol Cells 44(5):292–300. https://doi.org/10.14348/molcells.2021.0058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borst K, Dumas AA, Prinz M (2021) Microglia: immune and non-immune functions. Immunity 54(10):2194–2208. https://doi.org/10.1016/j.immuni.2021.09.014

    Article  CAS  PubMed  Google Scholar 

  33. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. https://doi.org/10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9(1):42. https://doi.org/10.1186/s40035-020-00221-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN (2017) Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 95(11):1153–1165. https://doi.org/10.1007/s00109-017-1575-8

    Article  CAS  PubMed  Google Scholar 

  36. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30(1):36–50. https://doi.org/10.1016/j.cmet.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  37. Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V et al (2020) Tumor-associated macrophages in human breast, colorectal, lung ovarian and prostate cancers. Front Oncol 10:566511. https://doi.org/10.3389/fonc.2020.566511

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J et al (2022) Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond) 42(2):88–116. https://doi.org/10.1002/cac2.12250

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mbah NE, Lyssiotis CA (2022) Metabolic regulation of ferroptosis in the tumor microenvironment. J Biol Chem 298(3):101617. https://doi.org/10.1016/j.jbc.2022.101617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu H, Yang C, Jian L, Guo S, Chen R, Li K et al (2019) Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep 42(2):826–838. https://doi.org/10.3892/or.2019.7189

    Article  CAS  PubMed  Google Scholar 

  41. Kajarabille N, Latunde-Dada GO (2019) Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci. https://doi.org/10.3390/ijms20194968

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cui Y, Zhang Z, Zhou X, Zhao Z, Zhao R, Xu X et al (2021) Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflam 18(1):249. https://doi.org/10.1186/s12974-021-02231-x

    Article  CAS  Google Scholar 

  43. Dar HH, Anthonymuthu TS, Ponomareva LA, Souryavong AB, Shurin GV, Kapralov AO et al (2021) A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO(·) sabotage of theft-ferroptosis. Redox Biol 45:102045. https://doi.org/10.1016/j.redox.2021.102045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu Z, Liu T, Liu C, Yang Y, Tang J, Song H et al (2021) Ferroptosis-strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal activities. Nano Lett 21(15):6471–6479. https://doi.org/10.1021/acs.nanolett.1c01401

    Article  CAS  PubMed  Google Scholar 

  45. Perrotta C, Cervia D, Di Renzo I, Moscheni C, Bassi MT, Campana L et al (2018) Nitric oxide generated by tumor-associated macrophages is responsible for cancer resistance to cisplatin and correlated with syntaxin 4 and acid sphingomyelinase inhibition. Front Immunol 9:1186. https://doi.org/10.3389/fimmu.2018.01186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H (2018) Dual role of macrophage in tumor immunity. Immunotherapy 10(10):899–909. https://doi.org/10.2217/imt-2018-0006

    Article  CAS  PubMed  Google Scholar 

  47. Prenen H, Mazzone M (2019) Tumor-associated macrophages: a short compendium. Cell Mol Life Sci 76(8):1447–1458. https://doi.org/10.1007/s00018-018-2997-3

    Article  CAS  PubMed  Google Scholar 

  48. Klöditz K, Fadeel B (2019) Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov 5:65. https://doi.org/10.1038/s41420-019-0146-x

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44(5):264–277. https://doi.org/10.1080/10409230903193307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tyurin VA, Balasubramanian K, Winnica D, Tyurina YY, Vikulina AS, He RR et al (2014) Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic ‘eat-me’ signals: cleavage and inhibition of phagocytosis by Lp-PLA2. Cell Death Differ 21(5):825–835. https://doi.org/10.1038/cdd.2014.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Subramanian M, Yurdagul A Jr, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J et al (2017) Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171(2):331-345.e22. https://doi.org/10.1016/j.cell.2017.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vago JP, Amaral FA, van de Loo FAJ (2021) Resolving inflammation by TAM receptor activation. Pharmacol Ther 227:107893. https://doi.org/10.1016/j.pharmthera.2021.107893

    Article  CAS  PubMed  Google Scholar 

  53. Kourtzelis I, Li X, Mitroulis I, Grosser D, Kajikawa T, Wang B et al (2019) DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 20(1):40–49. https://doi.org/10.1038/s41590-018-0249-1

    Article  CAS  PubMed  Google Scholar 

  54. Mehrotra P, Ravichandran KS (2022) Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov 21(8):601–620. https://doi.org/10.1038/s41573-022-00470-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsuchiya K, Nakajima S, Hosojima S, Thi Nguyen D, Hattori T, Le Manh T et al (2019) Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun 10(1):2091. https://doi.org/10.1038/s41467-019-09753-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nagata S (2018) Apoptosis and clearance of apoptotic cells. Annu Rev Immunol 36:489–517. https://doi.org/10.1146/annurev-immunol-042617-053010

    Article  CAS  PubMed  Google Scholar 

  57. Yang Z, Li Q, Wang X, Jiang X, Zhao D, Lin X et al (2018) C-type lectin receptor LSECtin-mediated apoptotic cell clearance by macrophages directs intestinal repair in experimental colitis. Proc Natl Acad Sci USA 115(43):11054–11059. https://doi.org/10.1073/pnas.1804094115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, Halama A et al (2012) Release of lysophospholipid ‘find-me’ signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 45(8):568–573. https://doi.org/10.3109/08916934.2012.719947

    Article  CAS  PubMed  Google Scholar 

  59. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286. https://doi.org/10.1038/nature08296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang H, Guo Z, Guo Y, Wang Z, Tang Y, Song T et al (2021) Bim transfer between Bcl-2-like protein and Hsp70 underlines Bcl-2/Hsp70 crosstalk to regulate apoptosis. Biochem Pharmacol 190:114660. https://doi.org/10.1016/j.bcp.2021.114660

    Article  CAS  PubMed  Google Scholar 

  61. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA et al (2013) Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498(7454):371–375. https://doi.org/10.1038/nature12175

    Article  CAS  PubMed  Google Scholar 

  62. Hattori H, Subramanian KK, Sakai J, Jia Y, Li Y, Porter TF et al (2010) Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc Natl Acad Sci USA 107(8):3546–3551. https://doi.org/10.1073/pnas.0914351107

    Article  PubMed  PubMed Central  Google Scholar 

  63. Uderhardt S, Martins AJ, Tsang JS, Lämmermann T, Germain RN (2019) Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177(3):541–55.e17. https://doi.org/10.1016/j.cell.2019.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Westman J, Grinstein S, Marques PE (2019) Phagocytosis of necrotic debris at sites of injury and inflammation. Front Immunol 10:3030. https://doi.org/10.3389/fimmu.2019.03030

    Article  CAS  PubMed  Google Scholar 

  65. Liu N, Liang Y, Wei T, Zou L, Huang X, Kong L et al (2022) The role of ferroptosis mediated by NRF2/ERK-regulated ferritinophagy in CdTe QDs-induced inflammation in macrophage. J Hazard Mater 436:129043. https://doi.org/10.1016/j.jhazmat.2022.129043

    Article  CAS  PubMed  Google Scholar 

  66. Zhao X, Si L, Bian J, Pan C, Guo W, Qin P et al (2022) Adipose tissue macrophage-derived exosomes induce ferroptosis via glutathione synthesis inhibition by targeting SLC7A11 in obesity-induced cardiac injury. Free Radic Biol Med 182:232–245. https://doi.org/10.1016/j.freeradbiomed.2022.02.033

    Article  CAS  PubMed  Google Scholar 

  67. Liu J, Zhu S, Zeng L, Li J, Klionsky DJ, Kroemer G et al (2022) DCN released from ferroptotic cells ignites AGER-dependent immune responses. Autophagy 18(9):2036–2049. https://doi.org/10.1080/15548627.2021.2008692

    Article  CAS  PubMed  Google Scholar 

  68. Luo X, Gong HB, Gao HY, Wu YP, Sun WY, Li ZQ et al (2021) Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ 28(6):1971–1789. https://doi.org/10.1038/s41418-020-00719-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wen Q, Liu J, Kang R, Zhou B, Tang D (2019) The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun 510(2):278–283. https://doi.org/10.1016/j.bbrc.2019.01.090

    Article  CAS  PubMed  Google Scholar 

  70. Yao Y, Chen Z, Zhang H, Chen C, Zeng M, Yunis J et al (2021) Author correction: selenium-GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol 22(12):1599. https://doi.org/10.1038/s41590-021-01063-4

    Article  CAS  PubMed  Google Scholar 

  71. Wang Q, Imamura R, Motani K, Kushiyama H, Nagata S, Suda T (2013) Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. Int Immunol 25(6):363–372. https://doi.org/10.1093/intimm/dxs161

    Article  CAS  PubMed  Google Scholar 

  72. Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, Li S, Wang B, Nemmara VV et al (2020) Succination inactivates gasdermin D and blocks pyroptosis. Science 369(6511):1633–1637. https://doi.org/10.1126/science.abb9818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y et al (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. https://doi.org/10.1126/science.aaz7548

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang Y, Gao W, Shi X, Ding J, Liu W, He H et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103. https://doi.org/10.1038/nature22393

    Article  CAS  PubMed  Google Scholar 

  75. Elliott MR, Ravichandran KS (2016) The dynamics of apoptotic cell clearance. Dev Cell 38(2):147–160. https://doi.org/10.1016/j.devcel.2016.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L et al (2010) High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem 285(51):39888–39897. https://doi.org/10.1074/jbc.M110.128348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L et al (2014) HMGB1 in health and disease. Mol Aspects Med 40:1–116. https://doi.org/10.1016/j.mam.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  78. Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT et al (2015) The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol 2(4):e1054549. https://doi.org/10.1080/23723556.2015.1054549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kang R, Tang D (2017) Autophagy and ferroptosis—what’s the connection? Curr Pathobiol Rep 5(2):153–159. https://doi.org/10.1007/s40139-017-0139-5

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kang R, Tang D, Schapiro NE, Loux T, Livesey KM, Billiar TR et al (2014) The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 33(5):567–577. https://doi.org/10.1038/onc.2012.631

    Article  CAS  PubMed  Google Scholar 

  81. Parameswaran N, Patial S (2010) Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 20(2):87–103. https://doi.org/10.1615/critreveukargeneexpr.v20.i2.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF, Li ZL et al (2018) Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol 29(3):919–935. https://doi.org/10.1681/asn.2017050523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Djudjaj S, Martin IV, Buhl EM, Nothofer NJ, Leng L, Piecychna M et al (2017) Macrophage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest. J Am Soc Nephrol 28(12):3590–3604. https://doi.org/10.1681/asn.2017020190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Atri C, Guerfali FZ, Laouini D (2018) Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. https://doi.org/10.3390/ijms19061801

    Article  PubMed  PubMed Central  Google Scholar 

  85. Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C et al (2019) Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. Faseb J 33(8):8961–8975. https://doi.org/10.1096/fj.201900077R

    Article  CAS  PubMed  Google Scholar 

  86. Zhou L, Xue X, Hou Q, Dai C (2022) Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel) 8(1):57–71. https://doi.org/10.1159/000517723

    Article  PubMed  Google Scholar 

  87. Wang Y, Chen Z, Luo J, Zhang J, Sang AM, Cheng ZS et al (2023) Salidroside postconditioning attenuates ferroptosis-mediated lung ischemia-reperfusion injury by activating the Nrf2/SLC7A11 signaling axis. Int Immunopharmacol 115:109731. https://doi.org/10.1016/j.intimp.2023.109731

    Article  CAS  PubMed  Google Scholar 

  88. Friedmann Angeli JP, Krysko DV, Conrad M (2019) Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 19(7):405–414. https://doi.org/10.1038/s41568-019-0149-1

    Article  CAS  PubMed  Google Scholar 

  89. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90. https://doi.org/10.1038/nchembio.2238

    Article  CAS  PubMed  Google Scholar 

  90. D’Herde K, Krysko DV (2017) Ferroptosis: oxidized PEs trigger death. Nat Chem Biol 13(1):4–5. https://doi.org/10.1038/nchembio.2261

    Article  CAS  PubMed  Google Scholar 

  91. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  PubMed  Google Scholar 

  92. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. https://doi.org/10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  95. Ganz T (2012) Macrophages and systemic iron homeostasis. J Innate Immun 4(5–6):446–453. https://doi.org/10.1159/000336423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xia Y, Li Y, Wu X, Zhang Q, Chen S, Ma X et al (2021) Ironing out the details: how iron orchestrates macrophage polarization. Front Immunol 12:669566. https://doi.org/10.3389/fimmu.2021.669566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mesquita G, Silva T, Gomes AC, Oliveira PF, Alves MG, Fernandes R et al (2020) H-Ferritin is essential for macrophages’ capacity to store or detoxify exogenously added iron. Sci Rep 10(1):3061. https://doi.org/10.1038/s41598-020-59898-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jung M, Mertens C, Brüne B (2015) Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 220(2):295–304. https://doi.org/10.1016/j.imbio.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  99. Recalcati S, Locati M, Gammella E, Invernizzi P, Cairo G (2012) Iron levels in polarized macrophages: regulation of immunity and autoimmunity. Autoimmun Rev 11(12):883–889. https://doi.org/10.1016/j.autrev.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  100. Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J et al (2021) The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull 66(17):1806–1816. https://doi.org/10.1016/j.scib.2021.02.010

    Article  CAS  Google Scholar 

  101. Zhou Y, Que KT, Zhang Z, Yi ZJ, Zhao PX, You Y et al (2018) Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med 7(8):4012–4022. https://doi.org/10.1002/cam4.1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gan ZS, Wang QQ, Li JH, Wang XL, Wang YZ, Du HH (2017) Iron reduces M1 macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1. Mediators Inflamm 2017:8570818. https://doi.org/10.1155/2017/8570818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Costa da Silva M, Breckwoldt MO, Vinchi F, Correia MP, Stojanovic A, Thielmann CM et al (2017) Iron induces anti-tumor activity in tumor-associated macrophages. Front Immunol 8:1479. https://doi.org/10.3389/fimmu.2017.01479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994. https://doi.org/10.1038/nnano.2016.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu ZW, Wen YH, Ma RQ, Chen L, Zeng XL, Wen WP et al (2021) Ferroptosis driver SOCS1 and suppressor FTH1 independently correlate with M1 and M2 macrophage infiltration in head and neck squamous cell carcinoma. Front Cell Dev Biol 9:727762. https://doi.org/10.3389/fcell.2021.727762

    Article  PubMed  PubMed Central  Google Scholar 

  106. Handa P, Thomas S, Morgan-Stevenson V, Maliken BD, Gochanour E, Boukhar S et al (2019) Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J Leukoc Biol 105(5):1015–1026. https://doi.org/10.1002/jlb.3a0318-108r

    Article  CAS  PubMed  Google Scholar 

  107. Hu X, Cai X, Ma R, Fu W, Zhang C, Du X (2019) Iron-load exacerbates the severity of atherosclerosis via inducing inflammation and enhancing the glycolysis in macrophages. J Cell Physiol 234(10):18792–18800. https://doi.org/10.1002/jcp.28518

    Article  CAS  PubMed  Google Scholar 

  108. Yuan Y, Chen Y, Peng T, Li L, Zhu W, Liu F et al (2019) Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci (Lond) 133(15):1759–1777. https://doi.org/10.1042/cs20190672

    Article  CAS  PubMed  Google Scholar 

  109. Zhang B, Yang Y, Yi J, Zhao Z, Ye R (2021) Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis. J Periodontal Res 56(5):991–1005. https://doi.org/10.1111/jre.12912

    Article  CAS  PubMed  Google Scholar 

  110. Sun S, Wu Y, Maimaitijiang A, Huang Q, Chen Q (2022) Ferroptotic cardiomyocyte-derived exosomes promote cardiac macrophage M1 polarization during myocardial infarction. PeerJ 10:e13717. https://doi.org/10.7717/peerj.13717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cosin-Roger J, Ortiz-Masià MD, Barrachina MD (2019) Macrophages as an emerging source of Wnt ligands: relevance in mucosal integrity. Front Immunol 10:2297. https://doi.org/10.3389/fimmu.2019.02297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yuan C, Yang D, Ma J, Yang J, Xue J, Song F et al (2020) Modulation of Wnt/β-catenin signaling in IL-17A-mediated macrophage polarization of RAW264.7 cells. Braz J Med Biol Res 53(8):e9488. https://doi.org/10.1590/1414-431x20209488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ et al (2020) Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 16(11):2069–2083. https://doi.org/10.1080/15548627.2020.1714209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C et al (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27(1):136–50.e5. https://doi.org/10.1016/j.cmet.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  115. Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B (2020) Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol 36:101670. https://doi.org/10.1016/j.redox.2020.101670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pan Y, Li J, Wang J, Jiang Q, Yang J, Dou H et al (2022) Ferroptotic MSCs protect mice against sepsis via promoting macrophage efferocytosis. Cell Death Dis 13(9):825. https://doi.org/10.1038/s41419-022-05264-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu Y, Liu X, Li Y, Dou H, Liang H, Hou Y (2021) SPION-MSCs enhance therapeutic efficacy in sepsis by regulating MSC-expressed TRAF1-dependent macrophage polarization. Stem Cell Res Ther 12(1):531. https://doi.org/10.1186/s13287-021-02593-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jung M, Weigert A, Mertens C, Rehwald C, Brüne B (2017) Iron handling in tumor-associated macrophages-is there a new role for lipocalin-2? Front Immunol 8:1171. https://doi.org/10.3389/fimmu.2017.01171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22(7):381–396. https://doi.org/10.1038/s41568-022-00459-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhao YY, Lian JX, Lan Z, Zou KL, Wang WM, Yu GT (2023) Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure in HNSCC. Oral Dis 29(3):933–941. https://doi.org/10.1111/odi.14077

    Article  PubMed  Google Scholar 

  121. Liu J, Dai E, Kang R, Kroemer G, Tang D (2021) The dark side of ferroptosis in pancreatic cancer. Oncoimmunology 10(1):1868691. https://doi.org/10.1080/2162402x.2020.1868691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X et al (2018) Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer 18(1):678. https://doi.org/10.1186/s12885-018-4584-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shi L, Liu Y, Li M, Luo Z (2022) Emerging roles of ferroptosis in the tumor immune landscape: from danger signals to anti-tumor immunity. Febs J 289(13):3655–3665. https://doi.org/10.1111/febs.16034

    Article  CAS  PubMed  Google Scholar 

  124. Zhang F, Li F, Lu GH, Nie W, Zhang L, Lv Y et al (2019) Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 13(5):5662–5673. https://doi.org/10.1021/acsnano.9b00892

    Article  CAS  PubMed  Google Scholar 

  125. Ruiz-de-Angulo A, Bilbao-Asensio M, Cronin J, Evans SJ, Clift MJD, Llop J et al (2020) Chemically programmed vaccines: iron catalysis in nanoparticles enhances combination immunotherapy and immunotherapy-promoted tumor ferroptosis. iScience 23(9):101499. https://doi.org/10.1016/j.isci.2020.101499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu S, Yang J, Sun G, Hu J, Zhang Q, Cai J et al (2021) Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury. Br J Pharmacol 178(18):3783–3796. https://doi.org/10.1111/bph.15518

    Article  CAS  PubMed  Google Scholar 

  127. Okubo K, Kurosawa M, Kamiya M, Urano Y, Suzuki A, Yamamoto K et al (2018) Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat Med 24(2):232–238. https://doi.org/10.1038/nm.4462

    Article  CAS  PubMed  Google Scholar 

  128. Chen J, Fu CY, Shen G, Wang J, Xu L, Li H et al (2022) Macrophages induce cardiomyocyte ferroptosis via mitochondrial transfer. Free Radic Biol Med 190:1–14. https://doi.org/10.1016/j.freeradbiomed.2022.07.015

    Article  CAS  PubMed  Google Scholar 

  129. Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J et al (2022) TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun 13(1):676. https://doi.org/10.1038/s41467-021-27948-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Giannini D, Antonucci M, Petrelli F, Bilia S, Alunno A, Puxeddu I (2020) One year in review 2020: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 38(3):387–397

    PubMed  Google Scholar 

  131. Phull AR, Nasir B, Haq IU, Kim SJ (2018) Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 281:121–136. https://doi.org/10.1016/j.cbi.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  132. Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12(8):472–485. https://doi.org/10.1038/nrrheum.2016.91

    Article  CAS  PubMed  Google Scholar 

  133. Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12(1):49–62. https://doi.org/10.1038/nrrheum.2015.169

    Article  CAS  PubMed  Google Scholar 

  134. McInnes IB, Schett G (2017) Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389(10086):2328–2337. https://doi.org/10.1016/s0140-6736(17)31472-1

    Article  CAS  PubMed  Google Scholar 

  135. Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R et al (2020) Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol 16(3):278–290. https://doi.org/10.1038/s41589-019-0462-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xiang DM, Sun W, Ning BF, Zhou TF, Li XF, Zhong W et al (2018) The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 67(9):1704–1715. https://doi.org/10.1136/gutjnl-2016-313392

    Article  CAS  PubMed  Google Scholar 

  137. Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM et al (2019) MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 18(1):42. https://doi.org/10.1186/s12943-019-0988-0

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S et al (2021) YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 13(12):e14351. https://doi.org/10.15252/emmm.202114351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D et al (2020) CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19(1):43. https://doi.org/10.1186/s12943-020-01168-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jiang Q, Wang K, Zhang X, Ouyang B, Liu H, Pang Z et al (2020) Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small 16(22):e2001704. https://doi.org/10.1002/smll.202001704

    Article  CAS  PubMed  Google Scholar 

  141. Kroll AV, Fang RH, Zhang L (2017) Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28(1):23–32. https://doi.org/10.1021/acs.bioconjchem.6b00569

    Article  CAS  PubMed  Google Scholar 

  142. Rao L, Bu LL, Ma L, Wang W, Liu H, Wan D et al (2018) Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew Chem Int Ed Engl 57(4):986–991. https://doi.org/10.1002/anie.201709457

    Article  CAS  PubMed  Google Scholar 

  143. Shen L, Zhou Y, He H, Chen W, Lenahan C, Li X et al (2021) Crosstalk between macrophages, T cells, and iron metabolism in tumor microenvironment. Oxid Med Cell Longev 2021:8865791. https://doi.org/10.1155/2021/8865791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang Y, Yu L, Ding J, Chen Y (2018) Iron metabolism in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20010095

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nielsen SR, Schmid MC (2017) Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm 2017:9624760. https://doi.org/10.1155/2017/9624760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475. https://doi.org/10.1158/0008-5472.Can-10-1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499. https://doi.org/10.1038/nature22396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sang Y, Deng Q, Cao F, Liu Z, You Y, Liu H et al (2021) Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano 15(12):19298–19309. https://doi.org/10.1021/acsnano.1c05392

    Article  CAS  PubMed  Google Scholar 

  149. Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z et al (2017) The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res 23(23):7375–7387. https://doi.org/10.1158/1078-0432.Ccr-17-1283

    Article  CAS  PubMed  Google Scholar 

  150. Gimbrone MA Jr, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–636. https://doi.org/10.1161/circresaha.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fernández-García V, González-Ramos S, Avendaño-Ortiz J, Martín-Sanz P, Delgado C, Castrillo A et al (2022) NOD1 splenic activation confers ferroptosis protection and reduces macrophage recruitment under pro-atherogenic conditions. Biomed Pharmacother 148:112769. https://doi.org/10.1016/j.biopha.2022.112769

    Article  CAS  PubMed  Google Scholar 

  152. Martinet W, Coornaert I, Puylaert P, De Meyer GRY (2019) Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol 10:306. https://doi.org/10.3389/fphar.2019.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li M, Xin S, Gu R, Zheng L, Hu J, Zhang R et al (2022) Novel diagnostic biomarkers related to oxidative stress and macrophage ferroptosis in atherosclerosis. Oxid Med Cell Longev 2022:8917947. https://doi.org/10.1155/2022/8917947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu T, Bao R, Wang Q, Hao W, Liu Y, Chang S et al (2022) SiO(2)-induced ferroptosis in macrophages promotes the development of pulmonary fibrosis in silicosis models. Toxicol Res (Camb) 11(1):42–51. https://doi.org/10.1093/toxres/tfab105

    Article  PubMed  Google Scholar 

  155. Wu YT, Zhong LS, Huang C, Guo YY, Jin FJ, Hu YZ et al (2022) β-Caryophyllene acts as a ferroptosis inhibitor to ameliorate experimental colitis. Int J Mol Sci. https://doi.org/10.3390/ijms232416055

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650. https://doi.org/10.1152/physrev.00011.2005

    Article  CAS  PubMed  Google Scholar 

  157. Wegiel B, Otterbein LE (2012) Go green: the anti-inflammatory effects of biliverdin reductase. Front Pharmacol 3:47. https://doi.org/10.3389/fphar.2012.00047

    Article  PubMed  PubMed Central  Google Scholar 

  158. Campbell NK, Fitzgerald HK, Dunne A (2021) Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 21(7):411–425. https://doi.org/10.1038/s41577-020-00491-x

    Article  CAS  PubMed  Google Scholar 

  159. Ma C, Wu X, Zhang X, Liu X, Deng G (2022) Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol 12:1004148. https://doi.org/10.3389/fcimb.2022.1004148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chinta KC, Rahman MA, Saini V, Glasgow JN, Reddy VP, Lever JM et al (2018) Microanatomic distribution of myeloid heme oxygenase-1 protects against free radical-mediated immunopathology in human tuberculosis. Cell Rep 25(7):1938–52.e5. https://doi.org/10.1016/j.celrep.2018.10.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y (2022) A dual role of heme oxygenase-1 in tuberculosis. Front Immunol 13:842858. https://doi.org/10.3389/fimmu.2022.842858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wu Y, Wu B, Zhang Z, Lu H, Fan C, Qi Q et al (2020) Heme protects intestinal mucosal barrier in DSS-induced colitis through regulating macrophage polarization in both HO-1-dependent and HO-1-independent way. Faseb J 34(6):8028–8043. https://doi.org/10.1096/fj.202000313RR

    Article  CAS  PubMed  Google Scholar 

  163. Campbell NK, Williams DG, Fitzgerald HK, Barry PJ, Cunningham CC, Nolan DP et al (2019) Trypanosoma brucei secreted aromatic ketoacids activate the Nrf2/HO-1 pathway and suppress pro-inflammatory responses in primary murine glia and macrophages. Front Immunol 10:2137. https://doi.org/10.3389/fimmu.2019.02137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Campbell NK, Fitzgerald HK, Fletcher JM, Dunne A (2019) Plant-derived polyphenols modulate human dendritic cell metabolism and immune function via AMPK-dependent induction of heme oxygenase-1. Front Immunol 10:345. https://doi.org/10.3389/fimmu.2019.00345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shimizu J, Murao A, Nofi C, Wang P, Aziz M (2022) Extracellular CIRP promotes GPX4-mediated ferroptosis in sepsis. Front Immunol 13:903859. https://doi.org/10.3389/fimmu.2022.903859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Qu C, Dai E, Lai T, Cao G, Liu J, Kang R et al (2021) Itaconic acid induces ferroptosis by activating ferritinophagy. Biochem Biophys Res Commun 583:56–62. https://doi.org/10.1016/j.bbrc.2021.10.054

    Article  CAS  PubMed  Google Scholar 

  167. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530. https://doi.org/10.1038/mp.2017.171

    Article  CAS  PubMed  Google Scholar 

  168. Hirata Y, Yamada C, Ito Y, Yamamoto S, Nagase H, Oh-Hashi K et al (2018) Novel oxindole derivatives prevent oxidative stress-induced cell death in mouse hippocampal HT22 cells. Neuropharmacology 135:242–252. https://doi.org/10.1016/j.neuropharm.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  169. Zhang Q, Qu Y, Zhang Q, Li F, Li B, Li Z et al (2022) Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09684-z

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hu Z, Yin Y, Jiang J, Yan C, Wang Y, Wang D et al (2022) Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression. J Gastrointest Oncol 13(2):754–767. https://doi.org/10.21037/jgo-21-916

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ito F, Kato K, Yanatori I, Murohara T, Toyokuni S (2021) Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin. Redox Biol 47:102174. https://doi.org/10.1016/j.redox.2021.102174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Truman-Rosentsvit M, Berenbaum D, Spektor L, Cohen LA, Belizowsky-Moshe S, Lifshitz L et al (2018) Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 131(3):342–352. https://doi.org/10.1182/blood-2017-02-768580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ito F, Yanatori I, Maeda Y, Nimura K, Ito S, Hirayama T et al (2020) Asbestos conceives Fe(II)-dependent mutagenic stromal milieu through ceaseless macrophage ferroptosis and β-catenin induction in mesothelium. Redox Biol 36:101616. https://doi.org/10.1016/j.redox.2020.101616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liu N, Liang Y, Wei T, Zou L, Bai C, Huang X et al (2022) Protein corona mitigated the cytotoxicity of CdTe QDs to macrophages by targeting mitochondria. NanoImpact 25:100367. https://doi.org/10.1016/j.impact.2021.100367

    Article  CAS  PubMed  Google Scholar 

  175. Kelley SM, Ravichandran KS (2021) Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease. EMBO Rep 22(6):e52564. https://doi.org/10.15252/embr.202152564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW et al (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572(7769):392–396. https://doi.org/10.1038/s41586-019-1456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

There is no financial conflict of interest between the authors. The authors would like to acknowledge the support of fundings. The authors would like to thank graphics program Adobe Illustrator and smart.servier.com for supporting.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 82001037), the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0751) and the Research and Develop Program, West China Hospital of Stomatology, Sichuan University (Grant No. RD-02-202007) for Xuelian Tan.

Author information

Authors and Affiliations

Authors

Contributions

XT conceived and designed the study. WL drafted the manuscript. LY polished the language. WL, LY and XT searched and reviewed the literature, and created the figures and tables. All of the authors critically reviewed and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xuelian Tan.

Ethics declarations

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, W., Yang, L. & Tan, X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04871-4

Keywords

Navigation