Skip to main content

Advertisement

Log in

Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836

    Article  CAS  PubMed  Google Scholar 

  2. Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    Article  PubMed  Google Scholar 

  3. Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krautkramer KA, Fan J, Bäckhed F (2021) Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 19(2):77–94

    Article  CAS  PubMed  Google Scholar 

  5. Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76(3):473–493

    Article  CAS  PubMed  Google Scholar 

  6. Dvořák Z, Sokol H, Mani S (2020) Drug Mimicry: Promiscuous Receptors PXR and AhR, and Microbial Metabolite Interactions in the Intestine. Trends Pharmacol Sci 41(12):900–908

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agus A, Planchais J, Sokol H (2018) Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23(6):716–724

    Article  CAS  PubMed  Google Scholar 

  8. Modoux M, Rolhion N, Mani, et al (2021) Tryptophan metabolism as a pharmacological target. Trends Pharmacol Sci 42(1):60–73

    Article  CAS  PubMed  Google Scholar 

  9. Borghi M, Puccetti M, Pariano M et al (2020) Tryptophan as a central hub for host/microbial symbiosis. Int J Tryptophan Res 13:1178646920919755

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jennis M, Cavanaugh CR, Leo GC et al (2018) Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil 30(2).

  11. Bhattarai Y, Williams BB, Battaglioli EJ et al (2018) Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 23(6):775-785.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Konopelski P, Konop M, Gawrys-Kopczynska M et al (2019) Indole-3-Propionic Acid, a tryptophan-derived bacterial metabolite, reduces weight gain in rats. Nutrients 11(3):591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamas B, Natividad JM, Sokol H (2018) Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 11(4):1024–1038

    Article  CAS  PubMed  Google Scholar 

  14. Dvořák Z, Kopp F, Costello CM et al (2020) Targeting the pregnane X receptor using microbial metabolite mimicry. EMBO Mol Med 12(4):e11621

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mani S (2020) Microbial metabolite mimicry: one step closer to drug discovery. Oncotarget 11(19):1680

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li H, Ranhotra HS, Mani S et al (2020) Human microbial metabolite mimicry as a strategy to expand the chemical space of potential drugs. Drug Discov Today 25(9):1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palego L, Betti L, Rossi A et al (2016) Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids 2016:8952520

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulates host serotonin biosynthesis. Cell 161(2):264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spohn SN, Mawe GM (2017) Non-conventional features of peripheral serotonin signalling - the gut and beyond. Nat Rev Gastroenterol Hepatol 14:412–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clarke G, Grenham S, Scully P et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673

    Article  CAS  PubMed  Google Scholar 

  21. Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: Tryptophan's metabolites in exercise, inflammation, and mental health. Science 357 (6349): eaaf9794.

  22. Gao J, Yao S, Mamitsuka H et al (2018) AiProAnnotator: Low-rank approximation with network side information for high-performance, large-scale human protein abnormality annotator. IEEE Int Conf Bioinform Biomed 2018:13–20

    Google Scholar 

  23. Zelante T, Iannitti RG, Cunha C et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385

    Article  CAS  PubMed  Google Scholar 

  24. Alexeev EE, Lanis JM, Kao DJ et al (2018) Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol 188(5):1183–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hubbard TD, Murray IA, Perdew GH (2015) Indole and tryptophan metabolism: endogenous and dietary routes to Ah Receptor activation. Drug Metab Dispos 43(10):1522–1535

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez FJ, Fernandez-Salguero P (1998) The aryl hydrocarbon receptor: studies using the AHR-null mice. Drug Metab Dispos 26(12):1194–1198

    CAS  PubMed  Google Scholar 

  27. Venkatesh M, Mukherjee S, Wang H et al (2014) Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41:296–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El Aidy S, Kunze W, Bienenstock J et al. The Microbiota and the gut-brain axis: Insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine. Benef Microbes 3:251–9.

  29. O’Mahony SM, Clarke G, Borre YE et al (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48

    Article  PubMed  Google Scholar 

  30. Natividad JM, Agus A, Planchais J et al (2018) Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 28(5):737-749.e4

    Article  CAS  PubMed  Google Scholar 

  31. Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamas B, Richard ML, Leducq V et al (2016) CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22(6):598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wlodarska M, Luo C, Kolde R et al (2017) Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe 22(1):25-37.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galligan JJ (2018) Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol Motil 30(2).

  35. Yang J, Chawla R, Rhee KY et al (2020) Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc Natl Acad Sci U S A 117(11):6114–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cervantes-Barragan L, Chai JN, Tianero MD et al (2017) (2017) Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357(6353):806–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mezrich JD, Fechner JH, Zhang X et al (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198

    Article  CAS  PubMed  Google Scholar 

  38. Iyer SS, Gensollen T, Gandhi A et al (2018) Dietary and microbial oxazoles induce intestinal inflammation by modulating aryl hydrocarbon receptor responses. Cell 173(5):1123-1134.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lanis JM, Alexeev EE, Curtis V et al (2017) Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol 10(5):1133–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shimada Y, Kinoshita M, Harada K et al (2013) Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8(11):e80604

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bansal T, Alaniz RC, Wood TK et al (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA 107:228–233

    Article  CAS  PubMed  Google Scholar 

  42. Scott SA, Fu J, Chang PV (2020) Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 117(32):19376–19387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee JH, Wood TK, Lee J (2015) Roles of indole as an interspecies and inter-kingdom signaling molecule. Trends Microbiol 23(11):707–718

    Article  CAS  PubMed  Google Scholar 

  44. Mizoguchi A, Yano A, Himuro H et al (2018) Clinical importance of IL-22 cascade in IBD. J Gastroenterol 53(4):465–474

    Article  CAS  PubMed  Google Scholar 

  45. Powell DN, Swimm A, Sonowal R et al (2020) Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc Natl Acad Sci U S A 117(35):21519–21526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park JH, Lee JM, Lee EJ et al (2018) Indole-3-carbinol promotes goblet-cell differentiation regulating Wnt and Notch signaling pathways AhR-dependently. Mol Cells 41(4):290–300

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Swimm A, Giver CR, DeFilipp Z et al (2018) Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease. Blood 132(23):2506–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosales C, Demaurex N, Lowell CA et al (2016) Neutrophils: their role in innate and adaptive immunity. J Immunol Res 2016:1–2

    Article  Google Scholar 

  49. Phillipson M, Kubes P (2019) The healing power of neutrophils. Trends Immunol 40:635–647

    Article  CAS  PubMed  Google Scholar 

  50. Schultz J, Kaminker K (1962) Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization Arch Biochem Biophys 96:465–467

    Article  CAS  PubMed  Google Scholar 

  51. Winterbourn CC (2002) Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid. Toxicology 181–182:223–227

    Article  PubMed  Google Scholar 

  52. Wang J (2018) Neutrophils in tissue injury and repair. Cell Tissue Res 371:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elliott SN, Wallace JL (1998) Neutrophil-mediated gastrointestinal injury. Can J Gastroenterol 12:559–568

    Article  CAS  PubMed  Google Scholar 

  54. Williams IR, Parkos CA (2007) Colonic neutrophils in inflammatory bowel disease: double-edged swords of the innate immune system with protective and destructive capacity. Gastroenterology 133:2049–2052

    Article  PubMed  Google Scholar 

  55. Alexeev EE, Dowdell AS, Henen MA et al (2021) Microbial-derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB J 35(5):e21552

    Article  CAS  PubMed  Google Scholar 

  56. Fu S, Wang H, Davies M et al (2000) Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine. J Biol Chem 275:10851–10858

    Article  CAS  PubMed  Google Scholar 

  57. Buss IH, Senthilmohan R, Darlow BA et al (2003) 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome. Pediatr Res 53:455–462

    Article  CAS  PubMed  Google Scholar 

  58. Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10(8):473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams BB, Van Benschoten AH, Cimermancic P et al (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16(4):495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roager HM, Hansen LB, Bahl MI et al (2016) Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol 1(9):16093

    Article  CAS  PubMed  Google Scholar 

  61. Gribble FM, Reimann F (2016) Enteroendocrine Cells: Chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299

    Article  CAS  PubMed  Google Scholar 

  62. Chimerel C, Emery E, Summers DK et al (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9(4):1202–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang X, Ota N, Manzanillo P et al (2014) Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514(7521):237–241

    Article  CAS  PubMed  Google Scholar 

  64. de Mello VD, Paananen J, Lindström J et al (2017) Indole propionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the finnish diabetes prevention study. Sci Rep 7:46337

    Article  PubMed  PubMed Central  Google Scholar 

  65. Abildgaard A, Elfving B, Hokland M et al (2018) The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch Physiol Biochem 124(4):306–312

    Article  CAS  PubMed  Google Scholar 

  66. Pavlova T, Vidova V, Bienertova-Vasku J et al (2017) Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal Chim Acta 987:72–80

    Article  CAS  PubMed  Google Scholar 

  67. Schirmer M, Smeekens SP, Vlamakis H et al (2016) Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 167(4):1125-1136.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hwang IK, Yoo KY, Li H et al (2009) Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res 87(9):2126–2137

    Article  CAS  PubMed  Google Scholar 

  69. Huć T, Nowinski A, Drapala A et al (2018) Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 130:172–179

    Article  PubMed  Google Scholar 

  70. Postler TS, Ghosh S (2017) Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab 26(1):110–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marques FZ, Mackay CR, Kaye DM (2018) Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol 15:20–32

    Article  PubMed  Google Scholar 

  72. Zhu W, Gregory JC, Org E et al (2016) Gut microbial metabolite TMAO enhances platelet hyper-reactivity and thrombosis risk. Cell 165:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kouno T, Zeng S, Wang Y et al (2023) Engineered bacteria producing aryl-hydrocarbon receptor agonists protect against ethanol-induced liver disease in mice. Alcohol Clin Exp Res (Hoboken) 47(5):856–867

    Article  CAS  PubMed  Google Scholar 

  74. Ding RX, Goh WR, Wu RN et al (2019) Revisit gut microbiota and its impact on human health and disease. J Food Drug Anal 27(3):623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dabke K, Hendrick G, Devkota S (2019) The gut microbiome and metabolic syndrome. J Clin Invest 129(10):4050–4057

    Article  PubMed  PubMed Central  Google Scholar 

  76. Diehl AM, Day C (2017) Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 377(21):2063–2072

    Article  CAS  PubMed  Google Scholar 

  77. Taleb S (2019) Tryptophan dietary impacts gut barrier and metabolic diseases. Front Immunol 10:2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beaumont M, Neyrinck AM, Olivares M et al (2018). The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J 32(12):fj201800544.

  79. Hendrikx T, Duan Y, Wang Y et al (2019) Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 68(8):1504–1515

    Article  CAS  PubMed  Google Scholar 

  80. Boursier J, Diehl AM (2016) Non-alcoholic fatty liver disease and the gut microbiome. Clin Liver Dis 20:263–275

    Article  PubMed  Google Scholar 

  81. Loomba R, Seguritan V, Li W et al (2017) Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 25(5):1054-1062.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krishnan S, Ding Y, Saedi N et al (2018) Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 23:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Knudsen C, Neyrinck AM, Leyrolle Q et al (2021) Hepatoprotective effects of indole, a gut microbial metabolite. Leptin-Deficient Obese Mice J Nutr 151(6):1507–1516

    PubMed  Google Scholar 

  84. Dávalos A, Goedeke L, Smibert P et al (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 108(22):9232–9237

    Article  PubMed  PubMed Central  Google Scholar 

  85. Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474(7353):649–653

    Article  CAS  PubMed  Google Scholar 

  86. Virtue AT, McCright SJ, Wright JM et al (2019) The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med 11(496):eaav1892.

  87. Assmann TS, Cuevas-Sierra A, Riezu-Boj JI et al (2020) Comprehensive analysis reveals novel interactions between circulating micro RNAs and gut microbiota composition in human obesity. Int J Mol Sci 21(24):9509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  89. Cussotto S, Delgado I, Anesi A et al (2020) Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol 11:557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moreno-Indias I, Cardona F, Tinahones FJ et al (2014) Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 5:190

    Article  PubMed  PubMed Central  Google Scholar 

  91. Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546

    Article  PubMed  Google Scholar 

  92. Tuomainen M, Lindström J, Lehtonen M et al (2018) Associations of serum indole propionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes 8(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang B, Jiang M, Zhao J et al (2022) The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front Endocrinol (Lausanne) 13:841703

    Article  PubMed  Google Scholar 

  94. Jing W, Dong S, Luo X et al (2021) Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites. Pharmacol Res 164:105358

    Article  CAS  PubMed  Google Scholar 

  95. Aoki R, Aoki-Yoshida A, Suzuki C et al (2018) Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J Immunol 201(12):3683–3693

    Article  CAS  PubMed  Google Scholar 

  96. Chen J, Haller CA, Jernigan FE et al (2020) Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Sci Adv 6(3):eaay8230.

  97. Monteleone I, Rizzo A, Sarra M et al (2011) Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141(1):237–248

    Article  CAS  PubMed  Google Scholar 

  98. Sperber AD, Bangdiwala SI, Drossman DA et al (2021) Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study. Gastroenterology 160(1):99-114.e3

    Article  PubMed  Google Scholar 

  99. Black CJ, Ford AC (2020) Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat Rev Gastroenterol Hepatol 17(8):473–486

    Article  PubMed  Google Scholar 

  100. Wilmes L, Collins JM, O’Riordan KJ et al (2021) Of bowels, brain and behavior: A role for the gut microbiota in psychiatric comorbidities in irritable bowel syndrome. Neurogastroenterol Motil 33(3):e14095

    Article  PubMed  Google Scholar 

  101. Fan WT, Ding C, Xu NN et al (2017) Close association between intestinal microbiota and irritable bowel syndrome. Eur J Clin Microbiol Infect Dis 36(12):2303–2317

    Article  CAS  PubMed  Google Scholar 

  102. König J, Brummer RJ (2014) Alteration of the intestinal microbiota as a cause of and a potential therapeutic option in irritable bowel syndrome. Benef Microbes 5(3):247–261

    Article  PubMed  Google Scholar 

  103. Burns G, Carroll G, Mathe A et al (2019) Evidence for local and systemic immune activation in functional dyspepsia and the irritable bowel syndrome: A systematic review. Am J Gastroenterol 114(3):429–436

    Article  PubMed  Google Scholar 

  104. Bashashati M, Moossavi S, Cremon C et al (2018) Colonic immune cells in irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroenterol Motil 30(1).

  105. Stasi C, Bellini M, Bassotti G et al (2014) Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech Coloproctol 18(7):613–621

    Article  CAS  PubMed  Google Scholar 

  106. Ye L, Bae M, Cassilly CD et al (2021) Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 29(2):179–196

    Article  CAS  PubMed  Google Scholar 

  107. Cryan JF, O’Riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99(4):1877–2013

    Article  CAS  PubMed  Google Scholar 

  108. Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595(2):489–503

    Article  CAS  PubMed  Google Scholar 

  109. Generoso JS, Giridharan VV, Lee J et al (2021) The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz J Psychiatry 43(3):293–305

    Article  PubMed  Google Scholar 

  110. Jaglin M, Rhimi M, Philippe C et al (2018) Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front Neurosci 12:216

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mir HD, Milman A, Monnoye M et al (2020) The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology 119:104750

    Article  CAS  PubMed  Google Scholar 

  112. Rothhammer V, Mascanfroni ID, Bunse L et al (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22(6):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Andrews CN, Sidani S, Marshall JK (2020) Clinical Management of the microbiome in irritable bowel syndrome. J Can Assoc Gastroenterol 4(1):36–43

    Article  PubMed  PubMed Central  Google Scholar 

  114. Simpson CA, Mu A, Haslam N et al (2020) Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome. J Affect Disord 266:429–446

    Article  CAS  PubMed  Google Scholar 

  115. Darkoh,C, Plants-Paris K, Bishoff D et al (2019). Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. mSystems 4(2), e00346–e00318.

  116. Kumar A, Sperandio V (2019) Indole signaling at the host-microbiota-pathogen interface. MBio 10(3):e01031-e11019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9(1):3294

    Article  PubMed  PubMed Central  Google Scholar 

  118. Illés P, Krasulová K, Vyhlídalová B et al (2020) Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett 334:87–93

    Article  PubMed  Google Scholar 

  119. Vyhlídalová B, Bartoňková I, Jiskrová E et al (2020) Differential activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in intestinal and hepatic in vitro models. Toxicol Lett 324:104–110

    Article  PubMed  Google Scholar 

  120. Vyhlídalová B, Poulíková K, Bartoňková I et al (2019) Mono-methylindoles induce CYP1A genes and inhibit CYP1A1 enzyme activity in human hepatocytes and HepaRG cells. Toxicol Lett 313:66–76

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stepankova M, Bartonkova I, Jiskrova E et al (2018) Methylindoles and methoxyindoles are agonists and antagonists of human aryl hydrocarbon receptor. Mol Pharmacol 93(6):631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vyhlídalová B, Krasulová K, Pečinková P et al (2020) Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: A detailed characterization. Int J Mol Sci 21(7):2614

    Article  PubMed  PubMed Central  Google Scholar 

  123. Avilla MN, Malecki KMC, Hahn ME et al (2020) The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 33(4):860–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bittinger MA, Nguyen LP, Bradfield CA (2003) Aspartate aminotransferase generates proagonists of the aryl hydrocarbon receptor. Mol Pharmacol 64(3):550–556

    Article  CAS  PubMed  Google Scholar 

  125. Heath-Pagliuso S, Rogers WJ, Tullis K et al (1998) Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37(33):11508–11515

    Article  CAS  PubMed  Google Scholar 

  126. Nguyen LP, Hsu EL, Chowdhury G et al (2009) D-amino acid oxidase generates agonists of the aryl hydrocarbon receptor from D-tryptophan. Chem Res Toxicol 22(12):1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chowdhury G, Dostalek M, Hsu EL et al (2009) Structural identification of Diindole agonists of the aryl hydrocarbon receptor derived from degradation of indole-3-pyruvic acid. Chem Res Toxicol 22(12):1905–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Scott SA, Fu J, Chang PV, Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 117(32): 19376–19387.

  129. Seok SH, Ma ZX, Feltenberger JB et al (2018) Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). J Biol Chem 293(6):1994–2005

    Article  CAS  PubMed  Google Scholar 

  130. Loub WD, Wattenberg LW, Davis DW (1975) Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Natl Cancer Inst 54(4):985–988

    CAS  PubMed  Google Scholar 

  131. Miller CA 3rd (1997) Expression of the human aryl hydrocarbon receptor complex in yeast. Activation of transcription by indole compounds. J Biol Chem 272(52): 32824–32829.

  132. Higdon JV, Delage B, Williams DE et al (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dvorak Z, Poulikova K, Mani S (2021) Indole scaffolds as a promising class of the aryl hydrocarbon receptor ligands. Eur J Med Chem 215:113231

    Article  CAS  PubMed  Google Scholar 

  134. Bjeldanes LF, Kim JY, Grose KR et al (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 88(21):9543–9547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Saha S, Rajpal DK, Brown JR (2016) Human microbial metabolites as a source of new drugs. Drug Discovery Today 21:692–698

    Article  CAS  PubMed  Google Scholar 

  136. Li H, Illés P, Karunaratne CV et al (2021) Deciphering structural bases of intestinal and hepatic selectivity in targeting pregnane X receptor with indole-based microbial mimics. Bioorg Chem 109:104661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is thankful to Professor Sridhar Mani, Albert Einstein College of Medicine, Bronx, New York, USA and to Professor Zdenek Dvorak, Palacky University, Olomouc, Czech Republic, for their help and suggestions. The author is also grateful to St. Edmund’s College, Shillong, India.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sole author, hence, not applicable.

Corresponding author

Correspondence to Harmit S. Ranhotra.

Ethics declarations

Competing interests

The author has no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranhotra, H.S. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04867-0

Keywords

Navigation