Skip to main content

Advertisement

Log in

RNA m6A methylation regulators in sepsis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) modification is a class of epitope modifications that has received significant attention in recent years, particularly in relation to its role in various diseases, including sepsis. Epigenetic research has increasingly focused on m6A modifications, which is influenced by the dynamic regulation of three protein types: ‟Writers” (such as METTL3/METTL14/WTAP)—responsible for m6A modification; ‟Erasers” (FTO and ALKBH5)—involved in m6A de-modification; and ‟Readers” (YTHDC1/2, YTHDF1/2/3)—responsible for m6A recognition. Sepsis, a severe and fatal infectious disease, has garnered attention regarding the crucial effect of m6A modifications on its development. In this review, we attempted to summarize the recent studies on the involvement of m6A and its regulators in sepsis, as well as the significance of m6A modifications and their regulators in the development of novel drugs and clinical treatment. The potential value of m6A modifications and modulators in the diagnosis, treatment, and prognosis of sepsis has also been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

AKI:

Acute kidney injury

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

ALKBH5:

Alkylation repair homolog 5

CXCR2:

CXC chemokine receptor 2

eIF3:

Eukaryotic initiation factor 3

FTO:

Fat mass and obesity-associated protein

I/R:

Ischemia/reperfusion

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharide

HNRNP:

Nuclear inhomogeneous nuclear ribonucleoprotein

IGF2BP:

Insulin-like growth factor 2 mRNA-binding protein

MALAT1:

Metastasis-associated lung adenocarcinoma tran 1

METTL3:

Methyltransferase-like 3

NETs:

Neutrophil extracellular traps

PH:

Pulmonary hypertension

PMVECs:

Pulmonary microvascular endothelial cells

SAE:

Sepsis-associated encephalopathy

SOCS:

Suppressor of cytokine signaling

SH2:

Src-homology 2

SIRS:

Systemic inflammatory response syndrome

YTH:

YT521-B homolog

YTHDF2:

YTH structural domain family 2

WTAP:

Wilms tumor 1-associated protein

References

  1. Adhikari NK et al (2010) Critical care and the global burden of critical illness in adults. Lancet 376(9749):1339–1346

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fleischmann-Struzek C et al (2020) Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med 46(8):1552–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rudd KE et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395(10219):200–211

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jawad I, Luksic I, Rafnsson SB (2012) Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. J Glob Health 2(1):010404

    Article  PubMed  PubMed Central  Google Scholar 

  5. Faix JD (2013) Biomarkers of sepsis. Crit Rev Clin Lab Sci 50(1):23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 63(2):306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang Q et al (2022) The RNA m(6)A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death Dis 13(10):852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng LJ et al (2022) ALKBH5 expression could affect the function of t cells in systemic lupus erythematosus patients: a case-control study. Curr Pharm Des 28(27):2270–2278

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z et al (2022) Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: implications in lipid metabolic disorders. Genes Dis 9(1):51–61

    Article  PubMed  Google Scholar 

  10. Jin S et al (2022) The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKepsilon/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer 21(1):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang J et al (2020) The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int 20:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao W et al (2016) Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell 61(4):507–519

    Article  CAS  PubMed  Google Scholar 

  13. Hsu PJ et al (2017) Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27(9):1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Y et al (2018) Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28(6):616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117–120

    Article  PubMed  Google Scholar 

  17. Meyer KD et al (2015) 5’ UTR m(6)A promotes cap-independent translation. Cell 163(4):999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang H et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen ZJ et al (2021) Genome-wide identification of altered RNA m(6)A profiles in vascular tissue of septic rats. Aging (Albany NY) 13(17):21610–21627

    Article  CAS  PubMed  Google Scholar 

  20. Han YC et al (2021) Lipopolysaccharide alters the m6A epitranscriptomic tagging of RNAs in cardiac tissue. Front Mol Biosci 8:670160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dubey PK et al (2022) Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol Cell Biochem 477(1):129–141

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y et al (2022) METTL3-mediated N6-methyladenosine modification of Trim59 mRNA protects against sepsis-induced acute respiratory distress syndrome. Front Immunol 13:897487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen H et al (2022) N(6)-methyladenosine (m(6)A) methyltransferase METTL3 regulates sepsis-induced myocardial injury through IGF2BP1/HDAC4 dependent manner. Cell Death Discov 8(1):322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie W et al (2023) Silencing m6a reader ythdc1 reduces inflammatory response in sepsis-induced cardiomyopathy by inhibiting Serpina3n expression. Shock 59(5):791–802

    Article  CAS  PubMed  Google Scholar 

  25. Luo J et al (2021) Targeted inhibition of FTO demethylase protects mice against LPS-induced septic shock by suppressing NLRP3 inflammasome. Front Immunol 12:663295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X et al (2023) N(6)-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in mice. Nat Commun 14(1):1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du J et al (2020) N(6)-adenosine methylation of Socs1 mRNA is required to sustain the negative feedback control of macrophage activation. Dev Cell 55(6):737–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y et al (2019) The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am J Physiol Cell Physiol 317(4):C762-c775

    Article  CAS  PubMed  Google Scholar 

  29. Xing Y et al (2021) The protective role of YTHDF1-knock down macrophages on the immune paralysis of severe sepsis rats with ECMO. Microvasc Res 137:104178

    Article  CAS  PubMed  Google Scholar 

  30. Hao WY et al (2022) RNA m6A reader YTHDF1 facilitates inflammation via enhancing NLRP3 translation. Biochem Biophys Res Commun 616:76–81

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H et al (2022) Neutrophil extracellular traps mediate m(6)A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int J Biol Sci 18(8):3337–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y et al (2022) m(6)A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration. Signal Transduct Target Ther 7(1):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo S et al (2023) METTL3-mediated m6A mRNA methylation regulates neutrophil activation through targeting TLR4 signaling. Cell Rep 42(3):112259

    Article  CAS  PubMed  Google Scholar 

  34. Shen H et al (2023) N6-methyladenosine writer METTL3 accelerates the sepsis-induced myocardial injury by regulating m6A-dependent ferroptosis. Apoptosis 28(3–4):514–524

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z et al (2021) Review: the emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis. Front Cell Infect Microbiol 11:653228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Q et al (2020) Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol 13(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H et al (2022) Association among the gut microbiome, the serum metabolomic profile and RNA m(6)A methylation in sepsis-associated encephalopathy. Front Genet 13:859727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu XJ et al (2021) Metal-Protein nanoparticles facilitate anti-VSV and H1N1 Viruses through the coordinative actions on innate immune responses and METTL14. Macromol Biosci 21(4):e2000382

    Article  PubMed  Google Scholar 

  39. Fan Y et al (2022) Role of WTAP in cancer: from mechanisms to the therapeutic potential. Biomolecules 12(9):1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J et al (2021) WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m(6)A modification of ATF4 mRNA. Aging (Albany NY) 13(8):11135–11149

    Article  CAS  PubMed  Google Scholar 

  41. Lan J et al (2022) WTAP-mediated N(6)-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cell Mol Biol Lett 27(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu X et al (2020) N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal 69:109553

    Article  CAS  PubMed  Google Scholar 

  43. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7(6):454–465

    Article  CAS  PubMed  Google Scholar 

  44. Shen W et al (2021) FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol Cell Biochem 476(5):2171–2179

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y et al (2019) N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science 365(6458):1171–1176

    Article  CAS  PubMed  Google Scholar 

  46. Jin J et al (2022) m(6)A demethylase ALKBH5 restrains PEDV infection by regulating GAS6 expression in porcine alveolar macrophages. Int J Mol Sci 23(11):6191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou J et al (2021) m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity. Sci Adv 7(25):eabg0470

  48. Feng Z et al (2018) METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J Cell Mol Med 22(5):2558–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li HB et al (2017) m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548(7667):338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang S et al (2022) YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis. Cell Death Discov 8(1):244

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu R et al (2018) Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m(6)A-YTHDF2-dependent manner. Int J Obes (Lond) 42(7):1378–1388

    Article  CAS  PubMed  Google Scholar 

  52. Paris J et al (2019) Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25(1):137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie H et al (2020) METTL3/YTHDF2 m(6) A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. J Cell Mol Med 24(7):4092–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fei Q et al (2020) YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biol 18(4):e3000664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai X et al (2020) YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal Chem 92(1):1346–1354

    Article  CAS  PubMed  Google Scholar 

  56. Yu R et al (2019) m6A reader YTHDF2 regulates LPS-induced inflammatory response. Int J Mol Sci 20(6):1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu R et al (2019) m(6)A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner. Cell Death Dis 10(3):171

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu L et al (2023) Ythdf2 promotes pulmonary hypertension by suppressing Hmox1-dependent anti-inflammatory and antioxidant function in alveolar macrophages. Redox Biol 61:102638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hemmi H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745

    Article  CAS  PubMed  Google Scholar 

  60. Liu Y et al (2022) Emodin attenuates LPS-induced acute lung injury by inhibiting NLRP3 Inflammasome-dependent pyroptosis signaling pathway in vitro and in vivo. Inflammation 45(2):753–767

    Article  CAS  PubMed  Google Scholar 

  61. Chen C et al (2022) Emodin accelerates diabetic wound healing by promoting anti-inflammatory macrophage polarization. Eur J Pharmacol 936:175329

    Article  CAS  PubMed  Google Scholar 

  62. Ding Z et al (2022) Emodin ameliorates antioxidant capacity and exerts neuroprotective effect via PKM2-mediated Nrf2 transactivation. Food Chem Toxicol 160:112790

    Article  CAS  PubMed  Google Scholar 

  63. Rolta R et al (2020) Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens. J Ethnopharmacol 257:112867

    Article  CAS  PubMed  Google Scholar 

  64. Zhong T et al (2017) Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment. Acta Pharmacol Sin 38(3):392–401

    Article  CAS  PubMed  Google Scholar 

  65. Xu Z et al (2022) Deoxycholic acid-chitosan coated liposomes combined with in situ colonic gel enhances renal fibrosis therapy of emodin. Phytomedicine 101:154110

    Article  CAS  PubMed  Google Scholar 

  66. McDonald SJ et al (2022) Therapeutic potential of emodin for gastrointestinal cancers. Integr Cancer Ther 21:15347354211067468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gao LL et al (2022) Emodin promotes autophagy and prevents apoptosis in sepsis-associated encephalopathy through activating BDNF/TrkB signaling. Pathobiology 89(3):135–145

    Article  CAS  PubMed  Google Scholar 

  68. Wang WB et al (2022) Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway. Chin Med 17(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shang L et al (2021) Emodin protects sepsis associated damage to the intestinal mucosal barrier through the VDR/ Nrf2 /HO-1 pathway. Front Pharmacol 12:724511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang B et al (2022) Emodin relieves the inflammation and pyroptosis of lipopolysaccharide-treated 1321N1 cells by regulating methyltransferase-like 3 -mediated NLR family pyrin domain containing 3 expression. Bioengineered 13(3):6740–6749

    Article  PubMed  PubMed Central  Google Scholar 

  71. Qiu Z et al (2020) Dexmedetomidine inhibits neuroinflammation by altering microglial M1/M2 polarization through MAPK/ERK pathway. Neurochem Res 45(2):345–353

    Article  CAS  PubMed  Google Scholar 

  72. Li M et al (2022) Dexmedetomidine improved one-lung ventilation-induced cognitive dysfunction in rats. BMC Anesthesiol 22(1):115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang YC et al (2022) Cardiac protection mechanism and clinical application of dexmedetomidine. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 44(1):130–135

    PubMed  Google Scholar 

  74. Wang YC et al (2022) Effects of perioperative dexmedetomidine infusion on renal function and microcirculation in kidney transplant recipients: a randomised controlled trial. Ann Med 54(1):1233–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu S, Lu Y (2020) Dexmedetomidine suppressed the biological behavior of HK-2 cells treated with LPS by down-regulating ALKBH5. Inflammation 43(6):2256–2263

    Article  CAS  PubMed  Google Scholar 

  76. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2012, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda (MD)

  77. Yang J et al (2022) Entacapone alleviates acute kidney injury by inhibiting ferroptosis. FASEB J 36(7):e22399

    Article  CAS  PubMed  Google Scholar 

  78. Peng S et al (2019) Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med 11(488)

  79. Chen B et al (2012) Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 134(43):17963–17971

    Article  CAS  PubMed  Google Scholar 

  80. Folliero V et al (2022) Rhein: a novel antibacterial compound against Streptococcus mutans infection. Microbiol Res 261:127062

    Article  CAS  PubMed  Google Scholar 

  81. Yin Z et al (2022) Rhein ameliorates cognitive impairment in an APP/PS1 transgenic mouse model of Alzheimer’s disease by relieving oxidative stress through activating the SIRT1/PGC-1alpha pathway. Oxid Med Cell Longev 2022:2524832

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhuang S et al (2019) Rhein ameliorates lipopolysaccharide-induced intestinal barrier injury via modulation of Nrf2 and MAPKs. Life Sci 216:168–175

    Article  CAS  PubMed  Google Scholar 

  83. Zheng P et al (2020) Rhein suppresses neuroinflammation via multiple signaling pathways in LPS-stimulated BV2 microglia cells. Evid Based Complement Alternat Med 2020:7210627

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang JN et al (2022) Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med 14(640):eabk2709

    Article  CAS  PubMed  Google Scholar 

  85. Zannella C et al (2021) Regulation of m6A methylation as a new therapeutic option against COVID-19. Pharmaceuticals (Basel) 14(11):1135

    Article  CAS  PubMed  Google Scholar 

  86. Purcarea A, Sovaila S (2020) Sepsis, a 2020 review for the internist. Rom J Intern Med 58(3):129–137

    PubMed  Google Scholar 

  87. Frye M et al (2018) RNA modifications modulate gene expression during development. Science 361(6409):1346–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang S et al (2020) Contribution of m6A subtype classification on heterogeneity of sepsis. Ann Transl Med 8(6):306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the reviewers who participated in the review and MJEditor (www.mjeditor.com) for their linguistic assistance during the preparation of the manuscript.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

LZ and HRZ designed the study and wrote the manuscript; LZ and XYZ researched the literature and drafted the manuscript; HRZ and LX reviewed the manuscript.

Corresponding authors

Correspondence to Hairong Zhang or Lei Xia.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors contributed to the article and approved the submitted version.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, H., Zhang, X. et al. RNA m6A methylation regulators in sepsis. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04841-w

Keywords

Navigation