Skip to main content

Advertisement

Log in

Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Drug addiction is a devastating condition that poses a serious burden on the society. The use of some drugs like morphine for their tremendous analgesic properties is also accompanied with developing tolerance, dependence and the withdrawal symptoms. These symptoms are frequently severe enough to reinforce the person in recovery to start over the use of drug again and hinder the clinical use of drugs like morphine for chronic pain. Research into opioid receptors and related molecular pathways has seen resurgence in the wake of the growing opioid epidemic. The current study provides a comprehensive scientific exploration of the molecular mechanisms and underlying signalling in morphine tolerance and dependence. It also critically evaluates current therapeutic approaches, shedding light on their efficacy and limitations, and future prospects.

Graphical Abstract

The graphical abstract depicts an overview of the pathways involved in the emergence of morphine-related tolerance and dependence including NMDA, Nitric oxide, and PPAR, as well as behavioural sensitization along with present and future innovative treatment strategies including stem cell therapy that have been discussed in the current manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Krishnamurti C, Rao SC (2016) The isolation of morphine by Serturner. Indian J Anaesth 60:861

    Article  PubMed  PubMed Central  Google Scholar 

  2. Su L-Y, Liu Q, Jiao L, Yao Y-G (2021) Molecular mechanism of neuroprotective effect of melatonin on morphine addiction and analgesic tolerance: an update. Mol Neurobiol 58:4628–4638

    Article  CAS  PubMed  Google Scholar 

  3. Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703

    Article  CAS  PubMed  Google Scholar 

  4. Kreek M, Reed B, Butelman E (2019) Current status of opioid addiction treatment and related preclinical research. Sci Adv 5:eaax9140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spencer MR, Warner M, Bastian BA, Trinidad JP, Hedegaard H (2019) Drug overdose deaths involving fentanyl, 2011–2016. Natl Vital Stat Rep 68:1–19

    PubMed  Google Scholar 

  6. Hedegaard H, Bastian BA, Trinidad JP, Spencer M and Warner M (2018) Drugs most frequently involved in drug overdose deaths: United States, 2011–2016. National Center for Health Statistics (U.S.);United States. Food and Drug. https://stacks.cdc.gov/view/cdc/61381

  7. Khan MI, Momeny M, Ostadhadi S, Jahanabadi S, Ejtemaei-Mehr S, Sameem B, Zarrinrad G, Dehpour AR (2018) Thalidomide attenuates development of morphine dependence in mice by inhibiting PI3K/Akt and nitric oxide signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry 82:39–48

    Article  CAS  PubMed  Google Scholar 

  8. Javadi S, Ejtemaeimehr S, Keyvanfar HR, Moghaddas P, Aminian A, Rajabzadeh A, Mani AR, Dehpour AR (2013) Pioglitazone potentiates development of morphine-dependence in mice: possible role of NO/cGMP pathway. Brain Res 1510:22–37

    Article  CAS  PubMed  Google Scholar 

  9. Harris AC, Gewirtz JC (2005) Acute opioid dependence: characterizing the early adaptations underlying drug withdrawal. Psychopharmacology 178:353–366

    Article  CAS  PubMed  Google Scholar 

  10. Evans CJ, Cahill CM (2016) Neurobiology of opioid dependence in creating addiction vulnerability. F1000Research 5:1748

    Article  Google Scholar 

  11. Listos J, Baranowska-Bosiacka I, Talarek S, Listos P, Orzelska J, Fidecka S, Gutowska I, Kolasa A, Rybicka M, Chlubek D (2013) The effect of perinatal lead exposure on dopamine receptor D2 expression in morphine dependent rats. Toxicology 310:73–83

    Article  CAS  PubMed  Google Scholar 

  12. Nicoara D, Zhang Y, Nelson JT, Brewer AL, Maharaj P, DeWald SN, Shirachi DY, Quock RM (2016) Hyperbaric oxygen treatment suppresses withdrawal signs in morphine-dependent mice. Brain Res 1648:434–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zebraski SE, Kochenash SM, Raffa RB (2000) Lung opioid receptors: pharmacology and possible target for nebulized morphine in dyspnea. Life Sci 66:2221–2231

    Article  CAS  PubMed  Google Scholar 

  14. Little JW, Cuzzocrea S, Bryant L, Esposito E, Doyle T, Rausaria S, Neumann WL, Salvemini D (2013) Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance. PAIN® 154:978–986

    Article  CAS  PubMed  Google Scholar 

  15. Khan MI, Ostadhadi S, Mumtaz F, Momeny M, Moghaddaskho F, Hassanipour M, Ejtemaei-Mehr S, Dehpour AR (2017) Thalidomide attenuates the development and expression of antinociceptive tolerance to μ-opioid agonist morphine through l-arginine-iNOS and nitric oxide pathway. Biomed Pharmacother 85:493–502

    Article  CAS  PubMed  Google Scholar 

  16. Mitra S, Sinatra RS, Warltier DC (2004) Perioperative management of acute pain in the opioid-dependent patient. J Am Soc Anesthesiol 101:212–227

    Article  Google Scholar 

  17. Hassanipour M, Amini-Khoei H, Shafaroodi H, Shirzadian A, Rahimi N, Imran-Khan M, Rezayat S-M, Dehpour A (2016) Atorvastatin attenuates the antinociceptive tolerance of morphine via nitric oxide dependent pathway in male mice. Brain Res Bull 125:173–180

    Article  CAS  PubMed  Google Scholar 

  18. Kotlinska J, Gibula-Bruzda E, Witkowska E, Chung N, Schiller P, Izdebski J (2013) Antinociceptive effects of two deltorphins analogs in the tail-immersion test in rats. Peptides 39:103–110

    Article  CAS  PubMed  Google Scholar 

  19. Célérier E, Yazdi MT, Castañé A, Ghozland S, Nyberg F, Maldonado R (2003) Effects of nandrolone on acute morphine responses, tolerance and dependence in mice. Eur J Pharmacol 465:69–81

    Article  PubMed  Google Scholar 

  20. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J (2019) The mechanisms involved in morphine addiction: an overview. Int J Mol Sci 20:4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood JD, Galligan J (2004) Function of opioids in the enteric nervous system. Neurogastroenterol Motil 16:17–28

    Article  PubMed  Google Scholar 

  22. James A, Williams J (2020) Basic opioid pharmacology—an update. Br J Pain 14:115–121

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang J-l, Wang H, Chen C, Pi H-f, Raun H-l, Zhang P, Wu J-z (2009) Addictive evaluation of cholic acid-verticinone ester, a potential cough therapeutic agent with agonist action of opioid receptor. Acta Pharmacol Sin 30:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cox BM, Christie MJ, Devi L, Toll L, Traynor JR (2015) Challenges for opioid receptor nomenclature: IUPHAR review 9. Br J Pharmacol 172:317–323

    Article  CAS  PubMed  Google Scholar 

  25. Dhaliwal A, Gupta M (2019) Physiology, opioid receptor. StatPearls Publishing, Treasure Island

    Google Scholar 

  26. Raehal KM, Bohn LM (2011) The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology 60:58–65

    Article  CAS  PubMed  Google Scholar 

  27. Pradhan AA, Befort K, Nozaki C, Gavériaux-Ruff C, Kieffer BL (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 32:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen X-T, Pitis PM, Gotchev D, Yuan C (2013) AG protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    Article  CAS  PubMed  Google Scholar 

  29. Violin JD, Crombie AL, Soergel DG, Lark MW (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35:308–316

    Article  CAS  PubMed  Google Scholar 

  30. Khroyan TV, Wu J, Polgar WE, Cami-Kobeci G, Fotaki N, Husbands SM, Toll L (2015) BU 08073 a buprenorphine analogue with partial agonist activity at μ-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Br J Pharmacol 172:668–680

    Article  CAS  PubMed  Google Scholar 

  31. Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hübner H (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kruegel AC, Gassaway MM, Kapoor A, Váradi A, Majumdar S, Filizola M, Javitch JA, Sames D (2016) Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 138:6754–6764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berger AC, Whistler JL (2010) How to design an opioid drug that causes reduced tolerance and dependence. Ann Neurol 67:559–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stafford K, Gomes AB, Shen J, Yoburn BC (2001) μ-Opioid receptor downregulation contributes to opioid tolerance in vivo. Pharmacol Biochem Behav 69:233–237

    Article  CAS  PubMed  Google Scholar 

  35. He L, Fong J, von Zastrow M, Whistler JL (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108:271–282

    Article  CAS  PubMed  Google Scholar 

  36. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ (2013) Regulation of µ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65:223–254

    Article  PubMed  PubMed Central  Google Scholar 

  37. Allouche S, Noble F, Marie N (2014) Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol 5:280

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bohn LM, Gainetdinov RR, Lin F-T, Lefkowitz RJ, Caron MG (2000) m-Opioid receptor desensitization by b-arrestin-2 determines morphine tolerance but not dependence. Nature. https://doi.org/10.1038/35047086

    Article  PubMed  Google Scholar 

  39. Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. J Am Soc Anesthesiol 115:1363–1381

    Article  CAS  Google Scholar 

  40. Nabemoto M, Mashimo M, Someya A, Nakamura H, Hirabayashi T, Fujino H, Kaneko M, Okuma Y, Saito T, Yamaguchi N (2008) Release of arachidonic acid by 2-arachidonoyl glycerol and HU210 in PC12 cells; roles of Src, phospholipase C and cytosolic phospholipase A2α. Eur J Pharmacol 590:1–11

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh N, Kesh K, Singh PK, Sharma U, Chupikova I, Ramakrishnan S, Roy S (2022) Morphine use induces gastric microbial dysbiosis driving gastric inflammation through TLR2 signaling which is attenuated by proton pump inhibitor. Br J Pharmacol. https://doi.org/10.1111/bph.16025

    Article  Google Scholar 

  42. Anselmi L, Jaramillo I, Palacios M, Huynh J, Sternini C (2013) Ligand-induced μ opioid receptor internalization in enteric neurons following chronic treatment with the opiate fentanyl. J Neurosci Res 91:854–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zuo ZJA (2005) The role of opioid receptor internalization and β-arrestins in the development of opioid tolerance. Anesth Analg 101:728–734

    Article  CAS  PubMed  Google Scholar 

  44. Fan X, Zhang J, Zhang X, Yue W, Ma LJN (2003) Differential regulation of β-arrestin 1 and β-arrestin 2 gene expression in rat brain by morphine. Neuroscience 117:383–389

    Article  CAS  PubMed  Google Scholar 

  45. Bulka A, Plesan A, Xu X-J, Wiesenfeld-Hallin ZJP (2002) Reduced tolerance to the anti-hyperalgesic effect of methadone in comparison to morphine in a rat model of mononeuropathy. Pain 95:103–109

    Article  CAS  PubMed  Google Scholar 

  46. Uchtenhagen A (2009) Guidelines for the psychosocially assisted pharmacological treatment of opioid dependence. Geneva: World Health Organization

  47. Bono A, Cuffari SJD (1997) Effectiveness and tolerance of tramadol in cancer pain. A comparative study with respect to buprenorphine. Drugs 53:40–49

    Article  PubMed  Google Scholar 

  48. Garry P, Ezra M, Rowland M, Westbrook J, Pattinson K (2015) The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol 263:235–243

    Article  CAS  PubMed  Google Scholar 

  49. Skrabalova J, Drastichova Z, Novotny J (2013) Morphine as a potential oxidative stress-causing agent. Mini-Rev Org Chem 10:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goudas LC, Langlade A, Serrie A, Matson W, Milbury P, Thurel C, Sandouk P, Carr DB (1999) Acute decreases in cerebrospinal fluid glutathione levels after intracerebroventricular morphine for cancer pain. Anesth Analg 89:1209–1215

    Article  CAS  PubMed  Google Scholar 

  51. Abdel-Zaher AO, Mostafa MG, Farghaly HS, Hamdy MM, Abdel-Hady RH (2013) Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav Brain Res 247:17–26

    Article  CAS  PubMed  Google Scholar 

  52. Zeng X-S, Geng W-S, Wang Z-Q, Jia J-J (2020) Morphine addiction and oxidative stress: the potential effects of thioredoxin-1. Front Pharmacol 11:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Džoljić E, Grabatinić I, Kostić V (2015) Why is nitric oxide important for our brain? Funct Neurol 30:159

    PubMed  PubMed Central  Google Scholar 

  54. Dambisya YM, Lee TL (1996) Role of nitric oxide in the induction and expression of morphine tolerance and dependence in mice. Br J Pharmacol 117:914–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hosseinzadeh H, Imenshahidi M, Hosseini M, Razavi BM (2012) Effect of linalool on morphine tolerance and dependence in mice. Phytother Res 26:1399–1404

    Article  CAS  PubMed  Google Scholar 

  56. Cappendijk SL, de Vries R, Dzoljic MR (1993) Inhibitory effect of nitric oxide (NO) synthase inhibitors on naloxone-precipitated withdrawal syndrome in morphine-dependent mice. Neurosci Lett 162:97–100

    Article  CAS  PubMed  Google Scholar 

  57. Chen C, Fan Q, Nong Z, Chen W, Li Y, Huang L, Feng D, Pan X, Lan S (2018) Hyperbaric oxygen attenuates withdrawal symptoms by regulating monoaminergic neurotransmitters and NO signaling pathway at nucleus accumbens in morphine-dependent rats. Neurochem Res 43:531–539

    Article  PubMed  Google Scholar 

  58. Ozdemir E, Bagcivan I, Durmus N, Altun A, Gursoy S (2011) The nitric oxide–cGMP signaling pathway plays a significant role in tolerance to the analgesic effect of morphine. Can J Physiol Pharmacol 89:89–95

    Article  CAS  PubMed  Google Scholar 

  59. Liang D-Y, Clark JD (2004) Modulation of the NO/CO-cGMP signaling cascade during chronic morphine exposure in mice. Neurosci Lett 365:73–77

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74:69–75

    Article  CAS  PubMed  Google Scholar 

  61. Popik P, Skolnick P (1996) The NMDA antagonist memantine blocks the expression and maintenance of morphine dependence. Pharmacol Biochem Behav 53:791–797

    Article  CAS  PubMed  Google Scholar 

  62. Esmaili-Shahzade-Ali-Akbari P, Hosseinzadeh H, Mehri S (2021) Effect of suvorexant on morphine tolerance and dependence in mice: role of NMDA, AMPA, ERK and CREB proteins. Neurotoxicology 84:64–72

    Article  CAS  PubMed  Google Scholar 

  63. Trujillo KA, Akil H (1991) Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251:85–87

    Article  CAS  PubMed  Google Scholar 

  64. Heneka MT, Klockgether T, Feinstein DL (2000) Peroxisome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell deathin vivo. J Neurosci 20:6862–6867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sarruf DA, Yu F, Nguyen HT, Williams DL, Printz RL, Niswender KD, Schwartz MW (2009) Expression of peroxisome proliferator-activated receptor-γ in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology 150:707–712

    Article  CAS  PubMed  Google Scholar 

  66. Janani C, Kumari BR (2015) PPAR gamma gene–a review. Diabetes Metab Syndr 9:46–50

    Article  CAS  PubMed  Google Scholar 

  67. Ray LA, Roche DJ, Heinzerling K, Shoptaw S (2014) Opportunities for the development of neuroimmune therapies in addiction. Int Rev Neurobiol 118:381–401

    Article  PubMed  Google Scholar 

  68. Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  CAS  PubMed  Google Scholar 

  69. Stopponi S, Somaini L, Cippitelli A, Cannella N, Braconi S, Kallupi M, Ruggeri B, Heilig M, Demopulos G, Gaitanaris G (2011) Activation of nuclear PPARγ receptors by the antidiabetic agent pioglitazone suppresses alcohol drinking and relapse to alcohol seeking. Biol Psychiat 69:642–649

    Article  CAS  PubMed  Google Scholar 

  70. Maeda T, Kiguchi N, Fukazawa Y, Yamamoto A, Ozaki M, Kishioka S (2007) Peroxisome proliferator-activated receptor gamma activation relieves expression of behavioral sensitization to methamphetamine in mice. Neuropsychopharmacology 32:1133–1140

    Article  CAS  PubMed  Google Scholar 

  71. Panlilio LV, Justinova Z, Mascia P, Pistis M, Luchicchi A, Lecca S, Barnes C, Redhi GH, Adair J, Heishman SJ (2012) Novel use of a lipid-lowering fibrate medication to prevent nicotine reward and relapse: preclinical findings. Neuropsychopharmacology 37:1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ghavimi H, Hassanzadeh K, Maleki-Dizaji N, Azarfardian A, Ghasami S, Zolali E, Charkhpour M (2014) Pioglitazone prevents morphine antinociception tolerance and withdrawal symptoms in rats. Naunyn Schmiedebergs Arch Pharmacol 387:811–821

    Article  CAS  PubMed  Google Scholar 

  73. Liu C-H, Cherng C-H, Lin S-L, Yeh C-C, Wu C-T, Tai Y-H, Wong C-S (2011) N-methyl-D-aspartate receptor antagonist MK-801 suppresses glial pro-inflammatory cytokine expression in morphine-tolerant rats. Pharmacol Biochem Behav 99:371–380

    Article  CAS  PubMed  Google Scholar 

  74. Watkins LR, Hutchinson MR, Rice KC, Maier SF (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang P, Yang M, Chen C, Liu L, Wei X, Zeng S (2020) Toll-like receptor 4 (TLR4)/opioid receptor pathway crosstalk and impact on opioid analgesia, immune function, and gastrointestinal motility. Front Immunol 11:1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Charkhpour M, Ghavimi H, Ghanbarzadeh S, Yousefi B, Khorrami A, Mesgari M, Hassanzadeh K (2015) Protective effect of pioglitazone on morphine-induced neuroinflammation in the rat lumbar spinal cord. J Biomed Sci 22:1–6

    Article  Google Scholar 

  77. Ghavimi H, Charkhpour M, Ghasemi S, Mesgari M, Hamishehkar H, Hassanzadeh K, Arami S, Hassanzadeh K (2015) Pioglitazone prevents morphine antinociceptive tolerance via ameliorating neuroinflammation in rat cerebral cortex. Pharmacol Rep 67:78–84

    Article  CAS  PubMed  Google Scholar 

  78. Verster JC, Scholey A, Dahl TA, Iversen JM (2021) Functional observation after morphine withdrawal: effects of SJP-005. Psychopharmacology 238:1449–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Guglielmo G, Kallupi M, Scuppa G, Demopulos G, Gaitanaris G, Ciccocioppo R (2017) Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents. Psychopharmacology 234:223–234

    Article  PubMed  Google Scholar 

  80. Prickaerts J, Van Staveren W, Şik A, Markerink-van Ittersum M, Niewöhner U, Van der Staay F, Blokland A, De Vente J (2002) Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113:351–361

    Article  CAS  PubMed  Google Scholar 

  81. Rehni AK, Bhateja P, Singh TG, Singh N (2008) Nuclear factor-κ-B inhibitor modulates the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. Behav Pharmacol 19:265–269

    Article  CAS  PubMed  Google Scholar 

  82. Sawaya BE, Deshmane SL, Mukerjee R, Fan S, Khalili K (2009) TNF alpha production in morphine-treated human neural cells is NF-κB-dependent. J Neuroimmune Pharmacol 4:140–149

    Article  PubMed  Google Scholar 

  83. Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive–sensitization view. Addiction 95:91–117

    Google Scholar 

  84. Sahraei H, Zarei F, Eidi A, Oryan S, Shams J, Khoshbaten A, Zarrindast M-R (2007) The role of nitric oxide within the nucleus accumbens on the acquisition and expression of morphine-induced place preference in morphine sensitized rats. Eur J Pharmacol 556:99–106

    Article  CAS  PubMed  Google Scholar 

  85. Huston JP, de Souza Silva MA, Topic B, Müller CP (2013) What’s conditioned in conditioned place preference? Trends Pharmacol Sci 34:162–166

    Article  CAS  PubMed  Google Scholar 

  86. Robinson TE, Berridge KC (2008) The incentive sensitization theory of addiction: some current issues. Phil Trans R Soc B 363:3137–3146

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    Article  CAS  PubMed  Google Scholar 

  88. Eisch AJ, Harburg GC (2006) Opiates, psychostimulants, and adult hippocampal neurogenesis: insights for addiction and stem cell biology. Hippocampus 16:271–286

    Article  CAS  PubMed  Google Scholar 

  89. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449

    Article  CAS  PubMed  Google Scholar 

  90. Reisi Z, Bani-Ardalan M, Zarepour L, Haghparast A (2014) Involvement of D1/D2 dopamine receptors within the nucleus accumbens and ventral tegmental area in the development of sensitization to antinociceptive effect of morphine. Pharmacol Biochem Behav 118:16–21

    Article  CAS  PubMed  Google Scholar 

  91. Borgkvist A, Valjent E, Santini E, Hervé D, Girault J-A, Fisone G (2008) Delayed, context-and dopamine D1 receptor-dependent activation of ERK in morphine-sensitized mice. Neuropharmacology 55:230–237

    Article  CAS  PubMed  Google Scholar 

  92. Jeziorski M, White FJ, Wolf ME (1994) MK-801 prevents the development of behavioral sensitization during repeated morphine administration. Synapse 16:137–147

    Article  CAS  PubMed  Google Scholar 

  93. Carlezon WA Jr, Rasmussen K, Nestler EJ (1999) AMPA antagonist LY293558 blocks the development, without blocking the expression, of behavioral sensitization to morphine. Synapse 31:256–262

    Article  CAS  PubMed  Google Scholar 

  94. Mattick RP, Breen C, Kimber J, Davoli M (2009) Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD002209.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pilarinos A, Kwa Y, Joe R, Dong H, Grant C, Fast D, Buxton JA, DeBeck K (2023) Methadone maintenance treatment discontinuation among young people who use opioids in Vancouver, Canada. Can J Psychiatry 68:89–100

    Article  PubMed  Google Scholar 

  96. Faccio E, Aquili L, Rocelli M (2022) When the non-sharing of therapeutic goals becomes the problem: the story of a consumer and his addiction to methadone. J Psychiatr Ment Health Nurs 29:174–180

    Article  PubMed  Google Scholar 

  97. Kreutzwiser D, Tawfic QA (2020) Methadone for pain management: a pharmacotherapeutic review. CNS Drugs 34:827–839

    Article  CAS  PubMed  Google Scholar 

  98. Eap CB, Buclin T, Baumann P (2002) Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clin Pharmacokinet 41:1153–1193

    Article  CAS  PubMed  Google Scholar 

  99. Srivastava AB, Mariani JJ, Levin FR (2020) New directions in the treatment of opioid withdrawal. Lancet 395:1938–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gowing LR, Ali RL, White JM (2000) The management of opioid withdrawal. Drug Alcohol Rev 19:309–318

    Article  Google Scholar 

  101. Grim TW, Schmid CL, Stahl EL, Pantouli F, Ho J-H, Acevedo-Canabal A, Kennedy NM, Cameron MD, Bannister TD, Bohn LM (2020) AG protein signaling-biased agonist at the μ-opioid receptor reverses morphine tolerance while preventing morphine withdrawal. Neuropsychopharmacology 45:416–425

    Article  CAS  PubMed  Google Scholar 

  102. Kim SU, De Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200

    Article  CAS  PubMed  Google Scholar 

  103. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K (2019) Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. https://doi.org/10.1155/2019/9628536

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wei X, Yang X, Han Z-p, Qu F-f, Shao L, Shi Y-f (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saeedi P, Halabian R, Fooladi AAI (2019) A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig 6:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li F, Liu L, Cheng K, Chen Z, Cheng J (2018) The use of stem cell therapy to reverse opioid tolerance. Clin Pharmacol Ther 103:971–974

    Article  PubMed  Google Scholar 

  107. Hua Z, Liu L, Shen J, Cheng K, Liu A, Yang J, Wang L, Qu T, Yang H, Li Y (2016) Mesenchymal stem cells reversed morphine tolerance and opioid-induced hyperalgesia. Sci Rep 6:1–13

    Article  Google Scholar 

  108. Yang H, Sun J, Chen H, Wang F, Li Y, Wang H, Qu T (2019) Mesenchymal stem cells from bone marrow attenuated the chronic morphine-induced cAMP accumulation in vitro. Neurosci Lett 698:76–80

    Article  CAS  PubMed  Google Scholar 

  109. Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:1–14

    Article  Google Scholar 

  110. Kamarajan C, Porjesz B (2015) Advances in electrophysiological research. Alcohol Res 37:53

    PubMed  PubMed Central  Google Scholar 

  111. Stewart JL, May AC (2016) Electrophysiology for addiction medicine: from methodology to conceptualization of reward deficits. Prog Brain Res 224:67–84

    Article  PubMed  Google Scholar 

  112. Suk H-J, Boyden ES, van Welie I (2019) Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods 326:108357

    Article  CAS  PubMed  Google Scholar 

  113. Gross J (2014) Analytical methods and experimental approaches for electrophysiological studies of brain oscillations. J Neurosci Methods 228:57–66

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kalivas PW (2004) Recent understanding in the mechanisms of addiction. Curr Psychiatry Rep 6:347–351

    Article  PubMed  Google Scholar 

  115. Lane D, Tortorici V, Morgan M (2004) Behavioral and electrophysiological evidence for tolerance to continuous morphine administration into the ventrolateral periaqueductal gray. Neuroscience 125:63–69

    Article  CAS  PubMed  Google Scholar 

  116. Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, Georges F (2011) Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci 108:16446–16450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Georges F, Le Moine C, Aston-Jones G (2006) No effect of morphine on ventral tegmental dopamine neurons during withdrawal. J Neurosci 26:5720–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li Z, Luan W, Chen Y, Chen M, Dong Y, Lai B, Ma L, Zheng P (2011) Chronic morphine treatment switches the effect of dopamine on excitatory synaptic transmission from inhibition to excitation in pyramidal cells of the basolateral amygdala. J Neurosci 31:17527–17536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao Y, Inayat S, Dikin D, Singer J, Ruoff R, Troy J (2008) Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering. Proc Inst Mech Eng Part N 222:1–11

    Google Scholar 

  120. Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR (2012) Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat Methods 9:585–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaski SW, White AN, Gross JD, Siderovski DP (2021) Potential for Kappa opioid receptor agonists to engineer non-addictive analgesics: a narrative review. Anesth Analg 132:406

    Article  PubMed  PubMed Central  Google Scholar 

  122. Witkowska E, Godlewska M, Osiejuk J, Gątarz S, Wileńska B, Kosińska K, Starnowska-Sokół J, Piotrowska A, Lipiński PF, Matalińska J (2022) Bifunctional opioid/melanocortin peptidomimetics for use in neuropathic pain: variation in the type and length of the linker connecting the two pharmacophores. Int J Mol Sci 23:674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Smith MT, Kong D, Kuo A, Imam MZ, Williams CM (2023) Multitargeted opioid ligand discovery as a strategy to retain analgesia and reduce opioid-related adverse effects. J Med Chem 66:3746–3784

    Article  CAS  PubMed  Google Scholar 

  124. Khroyan TV, Polgar WE, Jiang F, Zaveri NT, Toll L (2009) Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/μ-opioid receptor agonists. J Pharmacol Exp Ther 331:946–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Varga BR, Streicher JM, Majumdar S (2023) Strategies towards safer opioid analgesics—a review of old and upcoming targets. Br J Pharmacol 180:975–993

    Article  CAS  PubMed  Google Scholar 

  126. Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, Czoty PW, Kishioka S, Zaveri NT, Ko M-C (2018) A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 10:e3483

    Article  Google Scholar 

  127. Kruegel AC, Grundmann O (2018) The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 134:108–120

    Article  CAS  PubMed  Google Scholar 

  128. Kruegel AC, Uprety R, Grinnell SG, Langreck C, Pekarskaya EA, Le Rouzic V, Ansonoff M, Gassaway MM, Pintar JE, Pasternak GW (2019) 7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Cent Sci 5:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Basheer M, Hassan Z, Gam L-H (2023) Upregulation of brain’s calcium binding proteins in mitragynine dependence: a potential cellular mechanism to addiction. Int J Med Sci 20:102–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hassan Z, Muzaimi M, Navaratnam V, Yusoff NH, Suhaimi FW, Vadivelu R, Vicknasingam BK, Amato D, von Hörsten S, Ismail NI (2013) From Kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 37:138–151

    Article  CAS  PubMed  Google Scholar 

  131. Swogger MT, Hart E, Erowid F, Erowid E, Trabold N, Yee K, Parkhurst KA, Priddy BM, Walsh Z (2015) Experiences of kratom users: a qualitative analysis. J Psychoact Drugs 47:360–367

    Article  Google Scholar 

  132. Stefanucci A, Minosi P, Pieretti S, Tanguturi P, Molnar G, Scioli G, Marinaccio L, Della Valle A, Streicher JM, Mollica A (2023) Design of analgesic trivalent peptides with low withdrawal symptoms: probing the antinociceptive profile of novel linear and cyclic peptides as opioid pan ligands. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.3c00005

    Article  PubMed  Google Scholar 

  133. de Guglielmo G, Kallupi M, Scuppa G, Stopponi S, Demopulos G, Gaitanaris G, Ciccocioppo R (2014) Analgesic tolerance to morphine is regulated by PPAR γ. Br J Pharmacol 171:5407–5416

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hao X-Q, Wang Z-Y, Chen J-M, Wu N, Li J (2021) Involvement of the nociceptin opioid peptide receptor in morphine-induced antinociception, tolerance and physical dependence in female mice. Metab Brain Dis 36:2243–2253

    Article  CAS  PubMed  Google Scholar 

  135. Hassan R, Pike See C, Sreenivasan S, Mansor SM, Müller CP, Hassan Z (2020) Mitragynine attenuates morphine withdrawal effects in rats—a comparison with methadone and buprenorphine. Front Psych 11:411

    Article  Google Scholar 

  136. Gabra BH, Afify EA, Daabees TT, Abou Zeit-Har MS (2005) The role of the NO/NMDA pathways in the development of morphine withdrawal induced by naloxone in vitro. Pharmacol Res 51:319–327

    Article  CAS  PubMed  Google Scholar 

  137. Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sánchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    Article  CAS  PubMed  Google Scholar 

  138. Song K, Li Y, Zhang H, An N, Wei Y, Wang L, Tian C, Yuan M, Sun Y, Xing Y (2020) Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4356386

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

BioRender software (Canada) was used for the construction of graphical portion of the manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

IB and MA participated in drafting the manuscript. BM and MIK conceptualized the study and were involved in the editing, proof reading and final preparation of the manuscript.

Corresponding authors

Correspondence to Babar Murtaza or Muhammad Imran Khan.

Ethics declarations

Competing interests

All authors have declared no conflict or competing financial interest whatsoever, which can negatively influence the current work reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badshah, I., Anwar, M., Murtaza, B. et al. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04810-3

Keywords

Navigation