Skip to main content

Advertisement

Log in

Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CAR-T:

Chimeric antigen receptor T-cell

CCN1:

CCN family member 1

CD33:

Cluster of differentiation 33

COVID-19:

The coronavirus disease 2019

CRS:

Cytokine release syndrome

CXC:

C-X-C motif chemokine

CXCR:

CXC receptor

CYR61:

Cysteine-rich angiogenic inducer 61

EC:

Endothelial cells

HGF:

Hepatocyte growth factor

HLA-DR:

Human leukocyte antigen—DR isotype

HLH:

Hemophagocytic lymphohistiocytosis

HO-1:

Heme oxidase-1

HUVEC:

Human umbilical vascular endothelial cell

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon-γ

IL-2:

Interleukin-2

IL-6R:

IL-6 receptor

MAPK:

Mitogen-activated protein kinase

MAS:

Macrophage activation syndrome

MCP-1:

Monocyte chemoattractant protein-1

MIP-1α:

Macrophage inflammatory protein-1α

MRTF-A:

Myocardin-related transcription factor-A

MSC:

Mesenchymal stem cell

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor κB

NK:

Natural killer

NQO1:

NADPH-dependent quinone oxidoreductase

PI3K/Akt:

Phosphoinositide-3-kinase–protein kinase B/Akt

ROCK:

Rho-associated kinases

ROS:

Reactive oxygen species

SDF:

Stromal cell-derived factor

TLS:

Tumor lysis syndrome

TNF-α:

Tumor necrosis factor-α

TSG-6:

TNF-stimulated gene 6

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Mansouri V, Yazdanpanah N, Rezaei N (2021) The immunologic aspects of cytokine release syndrome and graft versus host disease following car T cell therapy. Int Rev Immunol. https://doi.org/10.1080/08830185.2021.1984449

    Article  PubMed  Google Scholar 

  2. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration UK (2020) Covid-19: consider cytokine storm syndromes and immunosuppression. Lancet 395:1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, Grupp SA, Mackall CL (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188–195. https://doi.org/10.1182/blood-2014-05-552729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20:5–14. https://doi.org/10.3727/096368910x

    Article  PubMed  Google Scholar 

  5. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  6. Mushahary D, Spittler A, Kasper C, Weber V, Charwat V (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 93:19–31. https://doi.org/10.1002/cyto.a.23242

    Article  CAS  PubMed  Google Scholar 

  7. Alvandi Z, Bischoff J (2021) Endothelial-mesenchymal transition in cardiovascular disease. Arterioscler Thromb Vasc Biol 41:2357–2369. https://doi.org/10.1161/ATVBAHA.121.313788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Piera-Velazquez S, Jimenez SA (2019) Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev 99:1281–1324. https://doi.org/10.1152/physrev.00021.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4:22. https://doi.org/10.1038/s41536-019-0083-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V (2020) Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol 8:43. https://doi.org/10.3389/fbioe.2020.00043

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez-Fuentes DE, Fernandez-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldana HA (2021) Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res 52:93–101. https://doi.org/10.1016/j.arcmed.2020.08.006

    Article  CAS  PubMed  Google Scholar 

  12. Song N, Wakimoto H, Rossignoli F, Bhere D, Ciccocioppo R, Chen KS, Khalsa JK, Mastrolia I, Samarelli AV, Dominici M, Shah K (2021) Mesenchymal stem cell immunomodulation. in pursuit of controlling covid-19 related cytokine storm. Stem Cells 39:707–722. https://doi.org/10.1002/stem.3354

    Article  CAS  PubMed  Google Scholar 

  13. England JT, Abdulla A, Biggs CM, Lee AYY, Hay KA, Hoiland RL, Wellington CL, Sekhon M, Jamal S, Shojania K, Chen LYC (2021) Weathering the covid-19 storm: lessons from hematologic cytokine syndromes. Blood Rev 45:100707. https://doi.org/10.1016/j.blre.2020.100707

    Article  CAS  PubMed  Google Scholar 

  14. Tang L, Yin Z, Hu Y, Mei H (2020) Controlling cytokine storm is vital in covid-19. Front Immunol 11:570993. https://doi.org/10.3389/fimmu.2020.570993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shimabukuro-Vornhagen A, Godel P, Subklewe M, Stemmler HJ, Schlosser HA, Schlaak M, Kochanek M, Boll B, von Bergwelt-Baildon MS (2018) Cytokine release syndrome. J Immunother Cancer 6:56. https://doi.org/10.1186/s40425-018-0343-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Karki R, Kanneganti TD (2021) The ‘cytokine storm’: molecular mechanisms and therapeutic prospects. Trends Immunol 42:681–705. https://doi.org/10.1016/j.it.2021.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thepmankorn P, Bach J, Lasfar A, Zhao X, Souayah S, Chong ZZ, Souayah N (2021) Cytokine storm induced by sars-cov-2 infection: the spectrum of its neurological manifestations. Cytokine 138:155404. https://doi.org/10.1016/j.cyto.2020.155404

    Article  CAS  PubMed  Google Scholar 

  18. Kunchok A, Krecke KN, Flanagan EP, Jitprapaikulsan J, Lopez-Chiriboga AS, Chen JJ, Weinshenker BG, Pittock SJ (2020) Does area postrema syndrome occur in myelin oligodendrocyte glycoprotein-igg-associated disorders (Mogad)? Neurology 94:85–88. https://doi.org/10.1212/wnl.0000000000008786

    Article  PubMed  Google Scholar 

  19. Fajgenbaum DC, June CH (2020) Cytokine storm. N Engl J Med 383:2255–2273. https://doi.org/10.1056/NEJMra2026131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q (2019) Current progress in Car-T cell therapy for solid tumors. Int J Biol Sci 15:2548–2560. https://doi.org/10.7150/ijbs.34213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Riviere I (2016) Clinical manufacturing of car T cells: foundation of a promising therapy. Mol Ther Oncolytics 3:16015. https://doi.org/10.1038/mto.2016.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, Deol A, Reagan PM, Stiff P, Flinn IW, Farooq U, Goy A, McSweeney PA, Munoz J, Siddiqi T, Chavez JC, Herrera AF, Bartlett NL, Wiezorek JS, Navale L, Xue A, Jiang Y, Bot A, Rossi JM, Kim JJ, Go WY, Neelapu SS (2019) Long-Term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (Zuma-1): a single-arm, multicentre, phase 1–2 Trial. Lancet Oncol 20:31–42. https://doi.org/10.1016/S1470-2045(18)30864-7

    Article  CAS  PubMed  Google Scholar 

  23. Ying Z, Yang H, Guo Y, Li W, Zou D, Zhou D, Wang Z, Zhang M, Wu J, Liu H, Zhang P, Yang S, Zhou Z, Zheng H, Song Y, Zhu J (2021) Relmacabtagene Autoleucel (Relma-Cel) Cd19 Car-T therapy for adults with heavily pretreated relapsed/refractory large b-cell lymphoma in China. Cancer Med 10:999–1011. https://doi.org/10.1002/cam4.3686

    Article  CAS  PubMed  Google Scholar 

  24. Siegler EL, Kenderian SS (2020) Neurotoxicity and cytokine release syndrome after chimeric antigen receptor T Cell therapy: insights into mechanisms and novel therapies. Front Immunol 11:1973. https://doi.org/10.3389/fimmu.2020.01973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Doran J (2021) The many faces of cytokine release syndrome-related coagulopathy. Clin Hematol Int 3:3–12. https://doi.org/10.2991/chi.k.210117.001

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kang S, Kishimoto T (2021) Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med 53:1116–1123. https://doi.org/10.1038/s12276-021-00649-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lo CW, Chen MW, Hsiao M, Wang S, Chen CA, Hsiao SM, Chang JS, Lai TC, Rose-John S, Kuo ML, Wei LH (2011) Il-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res 71:424–434. https://doi.org/10.1158/0008-5472.CAN-10-1496

    Article  CAS  PubMed  Google Scholar 

  28. Riedemann NC, Neff TA, Guo RF, Bernacki KD, Laudes IJ, Sarma JV, Lambris JD, Ward PA (2003) Protective effects of Il-6 blockade in sepsis are linked to reduced C5a receptor expression. J Immunol 170:503–507. https://doi.org/10.4049/jimmunol.170.1.503

    Article  CAS  PubMed  Google Scholar 

  29. Kang S, Tanaka T, Inoue H, Ono C, Hashimoto S, Kioi Y, Matsumoto H, Matsuura H, Matsubara T, Shimizu K, Ogura H, Matsuura Y, Kishimoto T (2020) Il-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci U S A 117:22351–22356. https://doi.org/10.1073/pnas.2010229117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paleolog EM, Crossman DC, McVey JH, Pearson JD (1990) Differential regulation by cytokines of constitutive and stimulated secretion of von willebrand factor from endothelial cells. Blood 75:688–695

    Article  CAS  PubMed  Google Scholar 

  31. Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF (2004) Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von willebrand factor multimers under flow. Blood 104:100–106. https://doi.org/10.1182/blood-2004-01-0107

    Article  CAS  PubMed  Google Scholar 

  32. Norooznezhad AH, Mansouri K (2021) Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (covid-19). Microvasc Res 137:104188. https://doi.org/10.1016/j.mvr.2021.104188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teuwen LA, Geldhof V, Pasut A, Carmeliet P (2020) Covid-19: the vasculature unleashed. Nat Rev Immunol 20:389–391. https://doi.org/10.1038/s41577-020-0343-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruhl L, Pink I, Kuhne JF, Beushausen K, Keil J, Christoph S, Sauer A, Boblitz L, Schmidt J, David S, Jack HM, Roth E, Cornberg M, Schulz TF, Welte T, Hoper MM, Falk CS (2021) Endothelial dysfunction contributes to severe covid-19 in combination with dysregulated lymphocyte responses and cytokine networks. Signal Transduct Target Ther 6:418. https://doi.org/10.1038/s41392-021-00819-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biedermann BC (2008) Vascular endothelium and graft-versus-host disease. Best Pract Res Clin Haematol 21:129–138. https://doi.org/10.1016/j.beha.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Hong F, Shi M, Cao J, Wang Y, Gong Y, Gao H, Li Z, Zheng J, Zeng L, He A, Xu K (2021) Predictive role of endothelial cell activation in cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukaemia. J Cell Mol Med 25:11063–11074. https://doi.org/10.1111/jcmm.17029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cobb DA, Lee DW (2021) Cytokine release syndrome biology and management. Cancer J 27:119–125. https://doi.org/10.1097/PPO.0000000000000515

    Article  CAS  PubMed  Google Scholar 

  38. Riegler LL, Jones GP, Lee DW (2019) Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther Clin Risk Manag 15:323–335. https://doi.org/10.2147/TCRM.S150524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He Y, Lin S, Ao Q, He X (2020) The co-culture of Ascs and Epcs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Res Ther 11:338. https://doi.org/10.1186/s13287-020-01858-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Z, Han L, Sun T, Wang W, Li X, Wu B (2021) Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. J Biomed Mater Res A 109:538–550. https://doi.org/10.1002/jbm.a.37036

    Article  CAS  PubMed  Google Scholar 

  41. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ (2020) Cytokine release syndrome in severe covid-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 55:105954. https://doi.org/10.1016/j.ijantimicag.2020.105954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, Przepiorka D, Farrell AT, Pazdur R (2018) FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 23:943–947. https://doi.org/10.1634/theoncologist.2018-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pelaia C, Calabrese C, Garofalo E, Bruni A, Vatrella A, Pelaia G (2021) Therapeutic role of tocilizumab in Sars-Cov-2-induced cytokine storm: rationale and current evidence. Int J Mol Sci. https://doi.org/10.3390/ijms22063059

    Article  PubMed  PubMed Central  Google Scholar 

  44. Du P, Geng J, Wang F, Chen X, Huang Z, Wang Y (2021) Role of Il-6 inhibitor in treatment of covid-19-related cytokine release syndrome. Int J Med Sci 18:1356–1362. https://doi.org/10.7150/ijms.53564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou Z, Price CC (2020) Overview on the use of Il-6 agents in the treatment of patients with cytokine release syndrome (Crs) and pneumonitis related to covid-19 disease. Expert Opin Investig Drugs 29:1407–1412. https://doi.org/10.1080/13543784.2020.1840549

    Article  CAS  PubMed  Google Scholar 

  46. Teachey DT, Bishop MR, Maloney DG, Grupp SA (2018) Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘all.’ Nat Rev Clin Oncol 15:218. https://doi.org/10.1038/nrclinonc.2018.19

    Article  PubMed  Google Scholar 

  47. Zhang L, Wang S, Xu J, Zhang R, Zhu H, Wu Y, Zhu L, Li J, Chen L (2021) Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp Hematol Oncol 10:16. https://doi.org/10.1186/s40164-021-00209-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang QS, Wang Y, Lv HY, Han QW, Fan H, Guo B, Wang LL, Han WD (2015) Treatment of Cd33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 23:184–191. https://doi.org/10.1038/mt.2014.164

    Article  CAS  PubMed  Google Scholar 

  49. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Locke FL, Lin Y, Jain N, Daver N, Gulbis AM, Adkins S, Rezvani K, Hwu P, Shpall EJ (2018) Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘all.’ Nat Rev Clin Oncol 15:218. https://doi.org/10.1038/nrclinonc.2018.20

    Article  PubMed  PubMed Central  Google Scholar 

  50. Frey N (2017) cytokine release syndrome: who is at risk and how to treat. Best Pract Res Clin Haematol 30:336–340. https://doi.org/10.1016/j.beha.2017.09.002

    Article  PubMed  Google Scholar 

  51. Liu S, Deng B, Yin Z, Pan J, Lin Y, Ling Z, Wu T, Chen D, Chang AH, Gao Z, Song Y, Zhao Y, Tong C (2020) Corticosteroids do not influence the efficacy and kinetics of car-T cells for b-cell acute lymphoblastic leukemia. Blood Cancer J 10:15. https://doi.org/10.1038/s41408-020-0280-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, Traversari C, Bordignon C, Ciceri F, Ostuni R, Bonini C, Casucci M, Bondanza A (2018) Monocyte-derived Il-1 and Il-6 are differentially required for cytokine-release syndrome and neurotoxicity due to car T cells. Nat Med 24:739–748. https://doi.org/10.1038/s41591-018-0036-4

    Article  CAS  PubMed  Google Scholar 

  53. Xiao X, He X, Li Q, Zhang H, Meng J, Jiang Y, Deng Q, Zhao M (2019) Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: a case report. Clin Cancer Res 25:29–34. https://doi.org/10.1158/1078-0432.ccr-18-1379

    Article  PubMed  Google Scholar 

  54. Liu Y, Chen X, Wang D, Li H, Huang J, Zhang Z, Qiao Y, Zhang H, Zeng Y, Tang C, Yang S, Wan X, Chen YH, Zhang Y (2018) Hemofiltration successfully eliminates severe cytokine release syndrome following Cd19 Car-T-cell therapy. J Immunother 41:406–410. https://doi.org/10.1097/cji.0000000000000243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu R, Feng Z, Wang FS (2022) Mesenchymal stem cell treatment for covid-19. EBioMedicine 77:103920. https://doi.org/10.1016/j.ebiom.2022.103920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Q, Ma F, Zhong Y, Wang G, Hu L, Zhang Y, Xie J (2023) Efficacy and safety of human umbilical cord-derived mesenchymal stem cells for covid-19 pneumonia: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 14:118. https://doi.org/10.1186/s13287-023-03286-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Z, Shao S, Liu X, Tong Z (2023) Effect and safety of mesenchymal stem cells for patients with covid-19: systematic review and meta-analysis with trial sequential analysis. J Med Virol. https://doi.org/10.1002/jmv.28702

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li TT, Zhang B, Fang H, Shi M, Yao WQ, Li Y, Zhang C, Song J, Huang L, Xu Z, Yuan X, Fu JL, Zhen C, Zhang Y, Wang ZR, Zhang ZY, Yuan MQ, Dong T, Bai R, Zhao L, Cai J, Dong J, Zhang J, Xie WF, Li Y, Shi L, Wang FS (2023) Human mesenchymal stem cell therapy in severe covid-19 patients: 2-year follow-up results of a randomized, double-blind placebo-controlled trial. EBioMedicine 92:104600. https://doi.org/10.1016/j.ebiom.2023.104600

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jeyaraman M, John A, Koshy S, Ranjan R, Anudeep TC, Jain R, Swati K, Jha NK, Sharma A, Kesari KK, Prakash A, Nand P, Jha SK, Reddy PH (2021) Fostering mesenchymal stem cell therapy to halt cytokine storm in covid-19. Biochim Biophys Acta Mol Basis Dis 1867:166014. https://doi.org/10.1016/j.bbadis.2020.166014

    Article  CAS  PubMed  Google Scholar 

  60. Dilogo IH, Aditianingsih D, Sugiarto A, Burhan E, Damayanti T, Sitompul PA, Mariana N, Antarianto RD, Liem IK, Kispa T, Mujadid F, Novialdi N, Luviah E, Kurniawati T, Lubis AMT, Rahmatika D (2021) Umbilical cord mesenchymal stromal cells as critical covid-19 adjuvant therapy: a randomized controlled trial. Stem Cells Transl Med 10:1279–1287. https://doi.org/10.1002/sctm.21-0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hugues FC, Le Jeunne C, Pradalier A, Moulin M, Mauduit B (1986) Drug-induced bronchial spasm and asthma. Therapie 41:241–246

    CAS  PubMed  Google Scholar 

  62. Cheng X, Jiang M, Long L, Meng J (2021) Potential roles of mesenchymal stem cells and their exosomes in the treatment of covid-19. Front Biosci (Landmark Ed) 26:948–961. https://doi.org/10.52586/4999

    Article  CAS  PubMed  Google Scholar 

  63. Arabpour M, Saghazadeh A, Rezaei N (2021) Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol 97:107823. https://doi.org/10.1016/j.intimp.2021.107823

    Article  CAS  PubMed  Google Scholar 

  64. Chu M, Wang H, Bian L, Huang J, Wu D, Zhang R, Fei F, Chen Y, Xia J (2022) Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for covid-19 pneumonia. Stem Cell Rev Rep 18:2152–2163. https://doi.org/10.1007/s12015-022-10398-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park JH, Choi Y, Lim CW, Park JM, Yu SH, Kim Y, Han HJ, Kim CH, Song YS, Kim C, Yu SR, Oh EY, Lee SM, Moon J (2021) Potential therapeutic effect of micrornas in extracellular vesicles from mesenchymal stem cells against Sars-Cov-2. Cells. https://doi.org/10.3390/cells10092393

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baranovskii DS, Klabukov ID, Arguchinskaya NV, Yakimova AO, Kisel AA, Yatsenko EM, Ivanov SA, Shegay PV, Kaprin AD (2022) Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investig 9:7. https://doi.org/10.21037/sci-2022-025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu H, Yang Y, Jiang J, Wang X, Zhang C, Jiang Y, Hong L, Huang H (2019) Coexistence of a huge venous thromboembolism and bleeding tendency in cytokine release syndrome during car-T therapy. Onco Targets Ther 12:8955–8960. https://doi.org/10.2147/OTT.S223697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hashmi H, Mirza AS, Darwin A, Logothetis C, Garcia F, Kommalapati A, Mhaskar RS, Bachmeier C, Chavez JC, Shah B, Pinilla-Ibarz J, Khimani F, Lazaryan A, Liu H, Davila ML, Locke FL, Nishihori T, Jain MD (2020) Venous thromboembolism associated with Cd19-directed car T-cell therapy in large b-cell lymphoma. Blood Adv 4:4086–4090. https://doi.org/10.1182/bloodadvances.2020002060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou Y, Liu C, He J, Dong L, Zhu H, Zhang B, Feng X, Weng W, Cheng K, Yu M, Wang H (2020) Klf2(+) stemness maintains human mesenchymal stem cells in bone regeneration. Stem Cells 38:395–409. https://doi.org/10.1002/stem.3120

    Article  CAS  PubMed  Google Scholar 

  70. Wang Q, Zhang W, He G, Sha H, Quan Z (2016) Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells. Mol Med Rep 14:5551–5555. https://doi.org/10.3892/mmr.2016.5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O (2020) Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci 21:3242. https://doi.org/10.3390/ijms21093242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ikhapoh IA, Pelham CJ, Agrawal DK (2015) Atherogenic cytokines regulate vegf-a-induced differentiation of bone marrow-derived mesenchymal stem cells into endothelial cells. Stem Cells Int 2015:498328. https://doi.org/10.1155/2015/498328

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang N, Zhang R, Wang SJ, Zhang CL, Mao LB, Zhuang CY, Tang YY, Luo XG, Zhou H, Zhang TC (2013) Vascular endothelial growth factor stimulates endothelial differentiation from mesenchymal stem cells via rho/myocardin-related transcription factor–a signaling pathway. Int J Biochem Cell Biol 45:1447–1456. https://doi.org/10.1016/j.biocel.2013.04.021

    Article  CAS  PubMed  Google Scholar 

  74. Chen YX, Zeng ZC, Sun J, Zeng HY, Huang Y, Zhang ZY (2015) Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res 56:700–708. https://doi.org/10.1093/jrr/rrv026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, Yin Y, Niu G, Yan Z, Zhang B (2018) Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg 55:257–265. https://doi.org/10.1016/j.ejvs.2017.10.012

    Article  PubMed  Google Scholar 

  76. Böhrnsen F, Schliephake H (2016) Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures. Int J Oral Sci 8:223–230. https://doi.org/10.1038/ijos.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Santos RA, Asensi KD, de Barros JHO, de Menezes RCS, Cordeiro IR, Neto JMB, Kasai-Brunswick TH, Goldenberg R (2020) Intrinsic angiogenic potential and migration capacity of human mesenchymal stromal cells derived from menstrual blood and bone marrow. Int J Mol Sci 21:9563. https://doi.org/10.3390/ijms21249563

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jiang F, Ma J, Liang Y, Niu Y, Chen N, Shen M (2015) Amniotic mesenchymal stem cells can enhance angiogenic capacity via mmps in vitro and in vivo. Biomed Res Int 2015:324014. https://doi.org/10.1155/2015/324014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo R, Li L, Liu X, Yuan Y, Zhu W, Li L, Liu J, Lu Y, Cheng J, Chen Y (2020) Mesenchymal stem cells alleviate palmitic acid-induced endothelial-to-mesenchymal transition by suppressing endoplasmic reticulum stress. Am J Physiol Endocrinol Metab 319:E961-e980. https://doi.org/10.1152/ajpendo.00155.2020

    Article  CAS  PubMed  Google Scholar 

  80. Park S, Jung SC (2021) New sources, differentiation, and therapeutic uses of mesenchymal stem cells. Int J Mol Sci 22:5288. https://doi.org/10.3390/ijms22105288

    Article  PubMed  PubMed Central  Google Scholar 

  81. Varderidou-Minasian S, Lorenowicz MJ (2020) Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 10:5979–5997. https://doi.org/10.7150/thno.40122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S (2020) Immunosuppressive property of Mscs mediated by cell surface receptors. Front Immunol 11:1076. https://doi.org/10.3389/fimmu.2020.01076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xia L, Meng Q, Xi J, Han Q, Cheng J, Shen J, Xia Y, Shi L (2019) The synergistic effect of electroacupuncture and bone mesenchymal stem cell transplantation on repairing thin endometrial injury in rats. Stem Cell Res Ther 10:244. https://doi.org/10.1186/s13287-019-1326-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ling L, Hou J, Liu D, Tang D, Zhang Y, Zeng Q, Pan H, Fan L (2022) Important role of the Sdf-1/Cxcr4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (Had-Mscs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (Poi). Stem Cell Res Ther 13:79. https://doi.org/10.1186/s13287-022-02759-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76:3323–3348. https://doi.org/10.1007/s00018-019-03125-1

    Article  CAS  PubMed  Google Scholar 

  86. Fan H, Zhao G, Liu L, Liu F, Gong W, Liu X, Yang L, Wang J, Hou Y (2012) Pre-Treatment with Il-1β enhances the efficacy of Msc transplantation in Dss-induced colitis. Cell Mol Immunol 9:473–481. https://doi.org/10.1038/cmi.2012.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ziaei R, Ayatollahi M, Yaghobi R, Sahraeian Z, Zarghami N (2014) Involvement of Tnf-Α in differential gene expression pattern of Cxcr4 on human marrow-derived mesenchymal stem cells. Mol Biol Rep 41:1059–1066. https://doi.org/10.1007/s11033-013-2951-2

    Article  CAS  PubMed  Google Scholar 

  88. Sierra-Parraga JM, Merino A, Eijken M, Leuvenink H, Ploeg R, Moller BK, Jespersen B, Baan CC, Hoogduijn MJ (2020) Reparative effect of mesenchymal stromal cells on endothelial cells after hypoxic and inflammatory injury. Stem Cell Res Ther 11:352. https://doi.org/10.1186/s13287-020-01869-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ishiuchi N, Nakashima A, Doi S, Yoshida K, Maeda S, Kanai R, Yamada Y, Ike T, Doi T, Kato Y, Masaki T (2020) Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res Ther 11:130. https://doi.org/10.1186/s13287-020-01642-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Almalki SG, Agrawal DK (2017) Erk Signaling is required for Vegf-a/Vegfr2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther 8:113. https://doi.org/10.1186/s13287-017-0568-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hocking AM (2015) The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle) 4:623–630. https://doi.org/10.1089/wound.2014.0579

    Article  PubMed  Google Scholar 

  92. Alexeev V, Donahue A, Uitto J, Igoucheva O (2013) Analysis of chemotactic molecules in bone marrow-derived mesenchymal stem cells and the skin: Ccl27-Ccr10 axis as a basis for targeting to cutaneous tissues. Cytotherapy 15:171–184. https://doi.org/10.1016/j.jcyt.2012.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Joutoku Z, Onodera T, Matsuoka M, Homan K, Momma D, Baba R, Hontani K, Hamasaki M, Matsubara S, Hishimura R, Iwasaki N (2019) Ccl21/Ccr7 axis regulating juvenile cartilage repair can enhance cartilage healing in adults. Sci Rep 9:5165. https://doi.org/10.1038/s41598-019-41621-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y (2018) Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 14:493–507. https://doi.org/10.1038/s41581-018-0023-5

    Article  CAS  PubMed  Google Scholar 

  95. Kadle RL, Abdou SA, Villarreal-Ponce AP, Soares MA, Sultan DL, David JA, Massie J, Rifkin WJ, Rabbani P, Ceradini DJ (2018) Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion. PLoS ONE 13:e0193178. https://doi.org/10.1371/journal.pone.0193178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang S, Fang J, Liu Z, Hou P, Cao L, Zhang Y, Liu R, Li Y, Shang Q, Chen Y, Feng C, Wang G, Melino G, Wang Y, Shao C, Shi Y (2021) Inflammatory cytokines-stimulated human muscle stem cells ameliorate ulcerative colitis via the Ido-Tsg6 axis. Stem Cell Res Ther 12:50. https://doi.org/10.1186/s13287-020-02118-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, Guo SC, Lang HL, Zhang CQ, Wang Y, Deng ZF (2015) Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther 6:10. https://doi.org/10.1186/scrt546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang Y, Hao Z, Wang P, Xia Y, Wu J, Xia D, Fang S, Xu S (2019) Exosomes from Human Umbilical Cord Mesenchymal Stem Cells Enhance Fracture Healing through Hif-1alpha-Mediated Promotion of Angiogenesis in a Rat Model of Stabilized Fracture. Cell Prolif 52:e12570. https://doi.org/10.1111/cpr.12570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mizuta Y, Akahoshi T, Guo J, Zhang S, Narahara S, Kawano T, Murata M, Tokuda K, Eto M, Hashizume M, Yamaura K (2020) Exosomes from adipose tissue-derived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the Pi3k/Akt pathway in endothelial cells. Stem Cell Res Ther 11:508. https://doi.org/10.1186/s13287-020-02015-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan YL, Eng SP, Hafez P, Abdul Karim N, Law JX, Ng MH (2022) Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: a review of evidence in preclinical models. Stem Cells Transl Med 11:814–827. https://doi.org/10.1093/stcltm/szac044

    Article  PubMed  PubMed Central  Google Scholar 

  101. Farfán N, Carril J, Redel M, Zamorano M, Araya M, Monzón E, Alvarado R, Contreras N, Tapia-Bustos A, Quintanilla ME, Ezquer F, Valdés JL, Israel Y, Herrera-Marschitz M, Morales P (2020) Intranasal administration of mesenchymal stem cell secretome reduces hippocampal oxidative stress, neuroinflammation and cell death, improving the behavioral outcome following perinatal asphyxia. Int J Mol Sci 21:7800. https://doi.org/10.3390/ijms21207800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alshabibi MA, Khatlani T, Abomaray FM, AlAskar AS, Kalionis B, Messaoudi SA, Khanabdali R, Alawad AO, Abumaree MH (2018) Human decidua basalis mesenchymal stem/stromal cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes. Stem Cell Res Ther 9:275. https://doi.org/10.1186/s13287-018-1021-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chance TC, Herzig MC, Christy BA, Delavan C, Rathbone CR, Cap AP, Bynum JA (2020) Human mesenchymal stromal cell source and culture conditions influence extracellular vesicle angiogenic and metabolic effects on human endothelial cells in vitro. J Trauma Acute Care Surg 89:S100-s108. https://doi.org/10.1097/ta.0000000000002661

    Article  CAS  PubMed  Google Scholar 

  104. Liang X, Lin F, Ding Y, Zhang Y, Li M, Zhou X, Meng Q, Ma X, Wei L, Fan H, Liu Z (2021) Conditioned medium from induced pluripotent stem cell-derived mesenchymal stem cells accelerates cutaneous wound healing through enhanced angiogenesis. Stem Cell Res Ther 12:295. https://doi.org/10.1186/s13287-021-02366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Feng Y, Zhu R, Shen J, Wu J, Lu W, Zhang J, Zhang J, Liu K (2019) Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev 28:674–682. https://doi.org/10.1089/scd.2018.0248

    Article  CAS  PubMed  Google Scholar 

  106. Zhu W, Yuan Y, Liao G, Li L, Liu J, Chen Y, Zhang J, Cheng J, Lu Y (2018) Mesenchymal stem cells ameliorate hyperglycemia-induced endothelial injury through modulation of mitophagy. Cell Death Dis 9:837. https://doi.org/10.1038/s41419-018-0861-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu KH, Mo XM, Han ZC, Zhou B (2011) Stem cell engraftment and survival in the ischemic heart. Ann Thorac Surg 92:1917–1925. https://doi.org/10.1016/j.athoracsur.2011.07.012

    Article  PubMed  Google Scholar 

  108. Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH (2019) Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. Eur J Cell Biol 98:151041. https://doi.org/10.1016/j.ejcb.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  109. Wang Q, Li X, Wang Q, Xie J, Xie C, Fu X (2019) Heat shock pretreatment improves mesenchymal stem cell viability by heat shock proteins and autophagy to prevent cisplatin-induced granulosa cell apoptosis. Stem Cell Res Ther 10:348. https://doi.org/10.1186/s13287-019-1425-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim W, Lee SK, Kwon YW, Chung SG, Kim S (2019) Pioglitazone-primed mesenchymal stem cells stimulate cell proliferation, collagen synthesis and matrix gene expression in tenocytes. Int J Mol Sci 20:472. https://doi.org/10.3390/ijms20030472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, Yan C, Xie X, Lin Z, Panayi AC, Mi B, Liu G (2021) Exosomes derived from pioglitazone-pretreated mscs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology 19:150. https://doi.org/10.1186/s12951-021-00894-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Redondo-Castro E, Cunningham C, Miller J, Martuscelli L, Aoulad-Ali S, Rothwell NJ, Kielty CM, Allan SM, Pinteaux E (2017) Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res Ther 8:79. https://doi.org/10.1186/s13287-017-0531-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Golchin A, Shams F, Karami F (2020) Advancing mesenchymal stem cell therapy with Crispr/Cas9 for clinical trial studies. Adv Exp Med Biol 1247:89–100. https://doi.org/10.1007/5584_2019_459

    Article  CAS  PubMed  Google Scholar 

  114. Hu C, Zhao L, Li L (2021) Genetic modification by overexpression of target gene in mesenchymal stromal cell for treating liver diseases. J Mol Med (Berl) 99:179–192. https://doi.org/10.1007/s00109-020-02031-5

    Article  CAS  PubMed  Google Scholar 

  115. Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, Yang Z, Shen Z (2020) Hif-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther 11:373. https://doi.org/10.1186/s13287-020-01881-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Qu Q, Wang L, Bing W, Bi Y, Zhang C, Jing X, Liu L (2020) Mirna-126–3p carried by human umbilical cord mesenchymal stem cell enhances endothelial function through exosome-mediated mechanisms in vitro and attenuates vein graft neointimal formation in vivo. Stem Cell Res Ther 11:464. https://doi.org/10.1186/s13287-020-01978-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim JY, Choi JH, Kim SH, Park H, Lee D, Kim GJ (2021) Efficacy of gene modification in placenta-derived mesenchymal stem cells based on nonviral electroporation. Int J Stem Cells 14:112–118. https://doi.org/10.15283/ijsc20117

    Article  CAS  PubMed  Google Scholar 

  118. Ryu NE, Lee SH, Park H (2019) Spheroid culture system methods and applications for mesenchymal stem cells. Cells 8:1620. https://doi.org/10.3390/cells8121620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chan YH, Lee YC, Hung CY, Yang PJ, Lai PC, Feng SW (2021) Three-dimensional spheroid culture enhances multipotent differentiation and stemness capacities of human dental pulp-derived mesenchymal stem cells by modulating Mapk and Nf-Kb signaling pathways. Stem Cell Rev Rep 17:1810–1826. https://doi.org/10.1007/s12015-021-10172-4

    Article  CAS  PubMed  Google Scholar 

  120. Egorikhina MN, Rubtsova YP, Charykova IN, Bugrova ML, Bronnikova II, Mukhina PA, Sosnina LN, Aleynik DY (2020) Biopolymer hydrogel scaffold as an artificial cell niche for mesenchymal stem cells. Polymers (Basel) 12:2550. https://doi.org/10.3390/polym12112550

    Article  CAS  PubMed  Google Scholar 

  121. Lee EJ, Park SJ, Kang SK, Kim GH, Kang HJ, Lee SW, Jeon HB, Kim HS (2012) spherical bullet formation via e-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol Ther 20:1424–1433. https://doi.org/10.1038/mt.2012.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Qazi TH, Mooney DJ, Duda GN, Geissler S (2017) Biomaterials that promote cell-cell interactions enhance the paracrine function of Mscs. Biomaterials 140:103–114. https://doi.org/10.1016/j.biomaterials.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  123. Bou-Ghannam S, Kim K, Grainger DW, Okano T (2021) 3d cell sheet structure augments mesenchymal stem cell cytokine production. Sci Rep 11:8170. https://doi.org/10.1038/s41598-021-87571-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Campos F, Bonhome-Espinosa AB, Chato-Astrain J, Sanchez-Porras D, Garcia-Garcia OD, Carmona R, Lopez-Lopez MT, Alaminos M, Carriel V, Rodriguez IA (2020) Evaluation of fibrin-agarose tissue-like hydrogels biocompatibility for tissue engineering applications. Front Bioeng Biotechnol 8:596. https://doi.org/10.3389/fbioe.2020.00596

    Article  PubMed  PubMed Central  Google Scholar 

  125. de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA (2020) Strategies to use fibrinogen as bioink for 3d bioprinting fibrin-based soft and hard tissues. Acta Biomater 117:60–76. https://doi.org/10.1016/j.actbio.2020.09.024

    Article  CAS  PubMed  Google Scholar 

  126. Catelas I, Sese N, Wu BM, Dunn JC, Helgerson S, Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 12:2385–2396. https://doi.org/10.1089/ten.2006.12.2385

    Article  CAS  PubMed  Google Scholar 

  127. Ho W, Tawil B, Dunn JC, Wu BM (2006) The behavior of human mesenchymal stem cells in 3d fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Eng 12:1587–1595. https://doi.org/10.1089/ten.2006.12.1587

    Article  CAS  PubMed  Google Scholar 

  128. Wang O, Ismail A, Fabian FM, Lin H, Li Q, Elowsky C, Carlson MA, Burgess W, Velander WH, Kidambi S, Lei Y (2018) A totally recombinant fibrin matrix for mesenchymal stem cell culture and delivery. J Biomed Mater Res A 106:3135–3142. https://doi.org/10.1002/jbm.a.36508

    Article  CAS  PubMed  Google Scholar 

  129. Mendez JJ, Ghaedi M, Sivarapatna A, Dimitrievska S, Shao Z, Osuji CO, Steinbacher DM, Leffell DJ, Niklason LE (2015) Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials 40:61–71. https://doi.org/10.1016/j.biomaterials.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  130. Tan J, Li L, Wang H, Wei L, Gao X, Zeng Z, Liu S, Fan Y, Liu T, Chen J (2021) Biofunctionalized fibrin gel co-embedded with Bmscs and Vegf for accelerating skin injury repair. Mater Sci Eng C Mater Biol Appl 121:111749. https://doi.org/10.1016/j.msec.2020.111749

    Article  CAS  PubMed  Google Scholar 

  131. Carter K, Lee HJ, Na KS, Fernandes-Cunha GM, Blanco IJ, Djalilian A, Myung D (2019) Characterizing the impact of 2d and 3d culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomater 99:247–257. https://doi.org/10.1016/j.actbio.2019.09.022

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Medjaden Inc. for scientific editing of this manuscript. We thank Figdraw (www.figdraw.com) for its help in creating the figures.

Funding

This study was supported by the National Key Research and Development Program of China (2022YFA1105600), Science and Technology Project of Wuhan (No: 2020020602012112), Haihe Laboratory of Cell Ecosystem Innovation Fund (HH22KYZX0046), and the Tianjin Free Trade Zone Innovation Development Project 211 (ZMCY-03-2021002-01) funded the study. We are also grateful for the support from the 3551 Talent Plan of China Optics Valley.

Author information

Authors and Affiliations

Authors

Contributions

YW performed literature reviewing and wrote the first draft of the manuscript. HD, TD, and LZ contributed partial literature study and discussion. WF, YZ, and WQ revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wen Fan, Yu Zhang or Weiqi Yao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dong, H., Dong, T. et al. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04785-1

Keywords

Navigation