Skip to main content

Advertisement

Log in

The burning furnace: Alteration in lipid metabolism in cancer-associated cachexia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cancer cachexia can be defined as a complex metabolic syndrome characterized by weight loss, anorexia, and emaciation due to the wasting of adipose tissue and skeletal muscle. In the last decade, much research has been done to decipher the role of lipid metabolism in cancer cachexia. Tumors, as well as host-derived factors, cause major metabolic changes in the body. Metabolic changes lead to higher energy expenditure by the host. To meet the high energy demand, the host utilizes fat depots stored in adipose tissues by a process known as lipolysis. High catabolic and low anabolic response leads to loss of adipose tissue. A significant insight has been made regarding adipose tissue "browning" bestow on thermogenic activities of adipocytes that result in catabolic energy expenditure. Both lipolysis and WAT browning play an important role in exhaustion adipose tissue. The goal of this review is to summarise what is currently known and about altered lipid metabolism and its utilization in cancer cachexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

ACTH:

Adrenocorticotrophic hormone

AT:

Adipose tissue

AMPK:

AMP-activated protein kinase

ATGL:

Adipose triglyceride lipase

BAT:

Brown adipose tissue

β1-AR:

β1 Adrenergic receptor

DAG:

Diacylglycerol

ERK:

Extracellular signal-regulated kinase

FFA:

Free fatty acid

FDG:

Fluorodeoxyglucose

GPLR:

G protein-linked receptors

GSK-3b:

Glycogen synthase kinase 3b

HSL:

Hormone sensitive lipase

IL-6:

Intraleukin-6

LDL:

Low density protein

LPL:

Lipoprotein lipase

LIF:

Leukemia inhibitory factor

MAPK:

P42/44mitogen-activated protein kinase

MAG:

Monoacylglycerol

PTHrP:

Parathyroid hormone-related peptide

PET:

Positron emission tomography

PGE:

Prostaglandin E

PKA:

Protein kinase A

Prdm 16:

PR domain containing 16

Ppar:

Peroxisome proliferator-activated receptor

PUFA:

Polyunsaturated fatty acid

REE:

Resting energy expenditure

SFA:

Saturated fatty acid

TAG:

Triacylglycerol

TNF-α:

Tumor necrosis factor-α

TLR:

Toll like receptor

UCP1:

Uncoupling protein 1

VLDL:

Very low density protein

ZAG:

Zinc-α2 -glycoprotein

References

  1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12:489–495. https://doi.org/10.1016/S1470-2045(10)70218-7

    Article  PubMed  Google Scholar 

  2. Anker MS, Holcomb R, Muscaritoli M, von Haehling S, Haverkamp W, Jatoi A, Morley JE, Strasser F, Landmesser U, Coats AJS, Anker SD (2019) Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J Cachexia Sarcopenia Muscle 10:22–34. https://doi.org/10.1002/jcsm.12402

    Article  PubMed  PubMed Central  Google Scholar 

  3. Esper DH, Harb WA (2005) The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract 20:369–376. https://doi.org/10.1177/0115426505020004369

    Article  PubMed  Google Scholar 

  4. Petruzzelli M, Wagner EF (2016) Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev 30:489–501. https://doi.org/10.1101/gad.276733.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Porporato PE (2016) Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 5:e200. https://doi.org/10.1038/oncsis.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blum D, Omlin A, Baracos VE, Solheim TS, Tan BH, Stone P, Kaasa S, Fearon K, Strasser F, European Palliative Care Research C (2011) Cancer cachexia: a systematic literature review of items and domains associated with involuntary weight loss in cancer. Crit Rev Oncol Hematol 80:114–144. https://doi.org/10.1016/j.critrevonc.2010.10.004

    Article  PubMed  Google Scholar 

  7. Weyandt JD, Thompson CB, Giaccia AJ, Rathmell WK (2017) Metabolic alterations in cancer and their potential as therapeutic targets. Am Soc Clin Oncol Educ Book 37:825–832. https://doi.org/10.14694/EDBK_175561

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G, Duenas-Gonzalez A (2017) Understanding tumor anabolism and patient catabolism in cancer-associated cachexia. Am J Cancer Res 7:1107–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen P, Spiegelman BM (2016) Cell biology of fat storage. Mol Biol Cell 27:2523–2527. https://doi.org/10.1091/mbc.E15-10-0749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alves-Bezerra M, Cohen DE (2017) Triglyceride metabolism in the liver. Compr Physiol 8:1–8. https://doi.org/10.1002/cphy.c170012

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hellerstein MK (1999) De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr 53(Suppl 1):S53-65. https://doi.org/10.1038/sj.ejcn.1600744

    Article  PubMed  Google Scholar 

  12. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101. https://doi.org/10.1146/annurev.nutr.27.061406.093734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jensen MD, Ekberg K, Landau BR (2001) Lipid metabolism during fasting. Am J Physiol Endocrinol Metab 281:E789–E793. https://doi.org/10.1152/ajpendo.2001.281.4.E789

    Article  CAS  PubMed  Google Scholar 

  14. Tornqvist H, Belfrage P (1976) Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J Biol Chem 251:813–819

    Article  CAS  PubMed  Google Scholar 

  15. Rohm M, Zeigerer A, Machado J, Herzig S (2019) Energy metabolism in cachexia. EMBO Rep. https://doi.org/10.15252/embr.201847258

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16:153–166. https://doi.org/10.1016/j.cmet.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  17. Sidossis L, Kajimura S (2015) Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 125:478–486. https://doi.org/10.1172/JCI78362

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, Ali A, Chondronikola M, Mlcak R, Finnerty CC, Hawkins HK, Toliver-Kinsky T, Herndon DN (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22:219–227. https://doi.org/10.1016/j.cmet.2015.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89:381–410. https://doi.org/10.1152/physrev.00016.2008

    Article  CAS  PubMed  Google Scholar 

  20. Argiles JM, Alvarez B, Lopez-Soriano FJ (1997) The metabolic basis of cancer cachexia. Med Res Rev 17:477–498. https://doi.org/10.1002/(sici)1098-1128(199709)17:5%3c477::aid-med3%3e3.0.co;2-R

    Article  CAS  PubMed  Google Scholar 

  21. Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, Zimmermann R, Vesely P, Haemmerle G, Zechner R, Hoefler G (2011) Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333:233–238. https://doi.org/10.1126/science.1198973

    Article  CAS  PubMed  Google Scholar 

  22. Costelli P, Tessitore L, Batetta B, Mulas MF, Spano O, Pani P, Baccino FM, Dessi S (1999) Alterations of lipid and cholesterol metabolism in cachectic tumor-bearing rats are prevented by insulin. J Nutr 129:700–706. https://doi.org/10.1093/jn/129.3.700

    Article  CAS  PubMed  Google Scholar 

  23. Riccardi D, das Neves RX, de Matos-Neto EM, Camargo RG, Lima J, Radloff K, Alves MJ, Costa RGF, Tokeshi F, Otoch JP, Maximiano LF, de Alcantara PSM, Colquhoun A, Laviano A, Seelaender M (2020) Plasma lipid profile and systemic inflammation in patients with cancer cachexia. Front Nutr 7:4. https://doi.org/10.3389/fnut.2020.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zwickl H, Hackner K, Kofeler H, Krzizek EC, Muqaku B, Pils D, Scharnagl H, Solheim TS, Zwickl-Traxler E, Pecherstorfer M (2020) Reduced LDL-cholesterol and reduced total cholesterol as potential indicators of early cancer in male treatment-naive cancer patients with pre-cachexia and cachexia. Front Oncol 10:1262. https://doi.org/10.3389/fonc.2020.01262

    Article  PubMed  PubMed Central  Google Scholar 

  25. Korber J, Pricelius S, Heidrich M, Muller MJ (1999) Increased lipid utilization in weight losing and weight stable cancer patients with normal body weight. Eur J Clin Nutr 53:740–745. https://doi.org/10.1038/sj.ejcn.1600843

    Article  CAS  PubMed  Google Scholar 

  26. Tisdale MJ (2010) Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol 6:503–513. https://doi.org/10.2217/fon.10.20

    Article  CAS  PubMed  Google Scholar 

  27. Das SK, Hoefler G (2013) The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med 19:292–301. https://doi.org/10.1016/j.molmed.2013.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D (1992) Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 52:4113–4116

    CAS  PubMed  Google Scholar 

  29. Nomura K, Noguchi Y, Yoshikawa T, Kondo J (1997) Plasma interleukin-6 is not a mediator of changes in lipoprotein lipase activity in cancer patients. Hepatogastroenterology 44:1519–1526

    CAS  PubMed  Google Scholar 

  30. Kawamura I, Yamamoto N, Sakai F, Yamazaki H, Goto T (1999) Effect of lipoprotein lipase activators bezafibrate and NO-1886, on B16 melanoma-induced cachexia in mice. Anticancer Res 19:4099–4103

    CAS  PubMed  Google Scholar 

  31. Briddon S, Beck SA, Tisdale MJ (1991) Changes in activity of lipoprotein lipase, plasma free fatty acids and triglycerides with weight loss in a cachexia model. Cancer Lett 57:49–53. https://doi.org/10.1016/0304-3835(91)90062-m

    Article  CAS  PubMed  Google Scholar 

  32. Tsujimoto S, Kawamura I, Inami M, Lacey E, Nishigaki F, Naoe Y, Manda T, Goto T (2000) Cachexia induction by EL-4 lymphoma in mice and possible involvement of impaired lipoprotein lipase activity. Anticancer Res 20:3111–3116

    CAS  PubMed  Google Scholar 

  33. Kawakami M, Kondo Y, Imai Y, Hashiguchi M, Ogawa H, Hiragun A, Aotsuka S, Shibata S, Oda T, Murase T et al (1991) Suppression of lipoprotein lipase in 3T3-L1 cells by a mediator produced by SEKI melanoma, a cachexia-inducing human melanoma cell line. J Biochem 109:78–82

    CAS  PubMed  Google Scholar 

  34. Berg M, Fraker DL, Alexander HR (1994) Characterization of differentiation factor/leukaemia inhibitory factor effect on lipoprotein lipase activity and mRNA in 3T3-L1 adipocytes. Cytokine 6:425–432. https://doi.org/10.1016/1043-4666(94)90067-1

    Article  CAS  PubMed  Google Scholar 

  35. Nara-Ashizawa N, Akiyama Y, Maruyama K, Tsukada T, Yamaguchi K (2001) Lipolytic and lipoprotein lipase (LPL)-inhibiting activities produced by a human lung cancer cell line responsible for cachexia induction. Anticancer Res 21:3381–3387

    CAS  PubMed  Google Scholar 

  36. Kawamura I, Lacey E, Yamamoto N, Sakai F, Takeshita S, Inami M, Nishigaki F, Naoe Y, Tsujimoto S, Manda T, Shimomura K, Goto T (1999) Ponalrestat, an aldose reductase inhibitor, inhibits cachexia syndrome induced by colon26 adenocarcinoma in mice. Anticancer Res 19:4105–4111

    CAS  PubMed  Google Scholar 

  37. Nomura K, Noguchi Y, Matsumoto A (1996) Stimulation of decreased lipoprotein lipase activity in the tumor-bearing state by the antihyperlipidemic drug bezafibrate. Surg Today 26:89–94. https://doi.org/10.1007/BF00311770

    Article  CAS  PubMed  Google Scholar 

  38. Vaughan M, Berger JE, Steinberg D (1964) Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239:401–409

    Article  CAS  PubMed  Google Scholar 

  39. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291. https://doi.org/10.1016/j.cmet.2011.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyoshi H, Perfield JW 2nd, Souza SC, Shen WJ, Zhang HH, Stancheva ZS, Kraemer FB, Obin MS, Greenberg AS (2007) Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem 282:996–1002. https://doi.org/10.1074/jbc.M605770200

    Article  CAS  PubMed  Google Scholar 

  41. Cao DX, Wu GH, Yang ZA, Zhang B, Jiang Y, Han YS, He GD, Zhuang QL, Wang YF, Huang ZL, Xi QL (2010) Role of beta1-adrenoceptor in increased lipolysis in cancer cachexia. Cancer Sci 101:1639–1645. https://doi.org/10.1111/j.1349-7006.2010.01582.x

    Article  CAS  PubMed  Google Scholar 

  42. Agustsson T, Ryden M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J, Arner P (2007) Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67:5531–5537. https://doi.org/10.1158/0008-5472.CAN-06-4585

    Article  CAS  PubMed  Google Scholar 

  43. Yang X, Zhang X, Heckmann BL, Lu X, Liu J (2011) Relative contribution of adipose triglyceride lipase and hormone-sensitive lipase to tumor necrosis factor-alpha (TNF-alpha)-induced lipolysis in adipocytes. J Biol Chem 286:40477–40485. https://doi.org/10.1074/jbc.M111.257923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Borin TF, Angara K, Rashid MH, Achyut BR, Arbab AS (2017) Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int J Mol Sci. https://doi.org/10.3390/ijms18122661

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang W, Andersson M, Lonnroth C, Svanberg E, Lundholm K (2005) Prostaglandin E and prostacyclin receptor expression in tumor and host tissues from MCG 101-bearing mice: a model with prostanoid-related cachexia. Int J Cancer 115:582–590. https://doi.org/10.1002/ijc.20539

    Article  CAS  PubMed  Google Scholar 

  46. Lai V, George J, Richey L, Kim HJ, Cannon T, Shores C, Couch M (2008) Results of a pilot study of the effects of celecoxib on cancer cachexia in patients with cancer of the head, neck, and gastrointestinal tract. Head Neck 30:67–74. https://doi.org/10.1002/hed.20662

    Article  PubMed  Google Scholar 

  47. Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31. https://doi.org/10.2337/diabetes.53.1.25

    Article  CAS  PubMed  Google Scholar 

  48. Morigny P, Zuber J, Haid M, Kaltenecker D, Riols F, Lima JDC, Simoes E, Otoch JP, Schmidt SF, Herzig S, Adamski J, Seelaender M, Berriel Diaz M, Rohm M (2020) High levels of modified ceramides are a defining feature of murine and human cancer cachexia. J Cachexia Sarcopenia Muscle 11:1459–1475. https://doi.org/10.1002/jcsm.12626

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sokolowska E, Blachnio-Zabielska A (2019) The role of ceramides in insulin resistance. Front Endocrinol (Lausanne) 10:577. https://doi.org/10.3389/fendo.2019.00577

    Article  Google Scholar 

  50. Shahidi F, Ambigaipalan P (2018) Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 9:345–381. https://doi.org/10.1146/annurev-food-111317-095850

    Article  CAS  PubMed  Google Scholar 

  51. Tisdale MJ (1993) Mechanism of lipid mobilization associated with cancer cachexia: interaction between the polyunsaturated fatty acid, eicosapentaenoic acid, and inhibitory guanine nucleotide-regulatory protein. Prostaglandins Leukot Essent Fatty Acids 48:105–109. https://doi.org/10.1016/0952-3278(93)90017-q

    Article  CAS  PubMed  Google Scholar 

  52. Gu Z, Shan K, Chen H, Chen YQ (2015) n-3 polyunsaturated fatty acids and their role in cancer chemoprevention. Curr Pharmacol Rep 1:283–294. https://doi.org/10.1007/s40495-015-0043-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Novak TE, Babcock TA, Jho DH, Helton WS, Espat NJ (2003) NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am J Physiol Lung Cell Mol Physiol 284:L84–L89. https://doi.org/10.1152/ajplung.00077.2002

    Article  CAS  PubMed  Google Scholar 

  54. Whitehouse AS, Smith HJ, Drake JL, Tisdale MJ (2001) Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res 61:3604–3609

    CAS  PubMed  Google Scholar 

  55. Whitehouse AS, Tisdale MJ (2003) Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-kappaB. Br J Cancer 89:1116–1122. https://doi.org/10.1038/sj.bjc.6601132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sauer LA, Dauchy RT, Blask DE (2000) Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Cancer Res 60:5289–5295

    CAS  PubMed  Google Scholar 

  57. Islam-Ali B, Khan S, Price SA, Tisdale MJ (2001) Modulation of adipocyte G-protein expression in cancer cachexia by a lipid-mobilizing factor (LMF). Br J Cancer 85:758–763. https://doi.org/10.1054/bjoc.2001.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abe K, Uwagawa T, Haruki K, Takano Y, Onda S, Sakamoto T, Gocho T, Yanaga K (2018) Effects of omega-3 fatty acid supplementation in patients with bile duct or pancreatic cancer undergoing chemotherapy. Anticancer Res 38:2369–2375. https://doi.org/10.21873/anticanres.12485

    Article  CAS  PubMed  Google Scholar 

  59. Mocellin MC, Fernandes R, Chagas TR, Trindade E (2018) A meta-analysis of n-3 polyunsaturated fatty acids effects on circulating acute-phase protein and cytokines in gastric cancer. Clin Nutr 37:840–850. https://doi.org/10.1016/j.clnu.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  60. Cerchietti LC, Navigante AH, Castro MA (2007) Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutr Cancer 59:14–20. https://doi.org/10.1080/01635580701365068

    Article  CAS  PubMed  Google Scholar 

  61. Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM (2019) New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 196:117–134. https://doi.org/10.1016/j.pharmthera.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  62. Beutler B, Mahoney J, Le Trang N, Pekala P, Cerami A (1985) Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 161:984–995. https://doi.org/10.1084/jem.161.5.984

    Article  CAS  PubMed  Google Scholar 

  63. Cornelius P, Enerback S, Bjursell G, Olivecrona T, Pekala PH (1988) Regulation of lipoprotein lipase mRNA content in 3T3-L1 cells by tumour necrosis factor. Biochem J 249:765–769. https://doi.org/10.1042/bj2490765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen SZ, Qiu ZG (2011) Combined treatment with GH, insulin, and indomethacin alleviates cancer cachexia in a mouse model. J Endocrinol 208:131–136. https://doi.org/10.1677/JOE-10-0341

    Article  CAS  PubMed  Google Scholar 

  65. Sherry BA, Gelin J, Fong Y, Marano M, Wei H, Cerami A, Lowry SF, Lundholm KG, Moldawer LL (1989) Anticachectin/tumor necrosis factor-alpha antibodies attenuate development of cachexia in tumor models. FASEB J 3:1956–1962. https://doi.org/10.1096/fasebj.3.8.2721856

    Article  CAS  PubMed  Google Scholar 

  66. Fruhbeck G, Mendez-Gimenez L, Fernandez-Formoso JA, Fernandez S, Rodriguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27:63–93. https://doi.org/10.1017/S095442241400002X

    Article  CAS  PubMed  Google Scholar 

  67. Langin D, Arner P (2006) Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol Metab 17:314–320. https://doi.org/10.1016/j.tem.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  68. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF (2002) Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51:1319–1336. https://doi.org/10.2337/diabetes.51.5.1319

    Article  CAS  PubMed  Google Scholar 

  69. Souza SC, de Vargas LM, Yamamoto MT, Lien P, Franciosa MD, Moss LG, Greenberg AS (1998) Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem 273:24665–24669. https://doi.org/10.1074/jbc.273.38.24665

    Article  CAS  PubMed  Google Scholar 

  70. Tansey JT, Sztalryd C, Hlavin EM, Kimmel AR, Londos C (2004) The central role of perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life 56:379–385. https://doi.org/10.1080/15216540400009968

    Article  CAS  PubMed  Google Scholar 

  71. Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA, Luyun RF, Mattar BI, Loprinzi CL (2010) A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68:234–239. https://doi.org/10.1016/j.lungcan.2009.06.020

    Article  PubMed  Google Scholar 

  72. Diez-Itza I, Sanchez LM, Allende MT, Vizoso F, Ruibal A, Lopez-Otin C (1993) Zn-alpha 2-glycoprotein levels in breast cancer cytosols and correlation with clinical, histological and biochemical parameters. Eur J Cancer 29A:1256–1260. https://doi.org/10.1016/0959-8049(93)90068-q

    Article  CAS  PubMed  Google Scholar 

  73. Bondar OP, Barnidge DR, Klee EW, Davis BJ, Klee GG (2007) LC-MS/MS quantification of Zn-alpha2 glycoprotein: a potential serum biomarker for prostate cancer. Clin Chem 53:673–678. https://doi.org/10.1373/clinchem.2006.079681

    Article  CAS  PubMed  Google Scholar 

  74. Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, Tisdale MJ, Trayhurn P (2004) Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci USA 101:2500–2505. https://doi.org/10.1073/pnas.0308647100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Satyanarayana A, Klarmann KD, Gavrilova O, Keller JR (2012) Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J 26:309–323. https://doi.org/10.1096/fj.11-190892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896. https://doi.org/10.1038/nrm2066

    Article  CAS  PubMed  Google Scholar 

  77. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16:22–26. https://doi.org/10.1101/gad.948702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weidle UH, Klostermann S, Eggle D, Kruger A (2010) Interleukin 6/interleukin 6 receptor interaction and its role as a therapeutic target for treatment of cachexia and cancer. Cancer Genom Proteom 7:287–302

    CAS  Google Scholar 

  79. Tsoli M, Moore M, Burg D, Painter A, Taylor R, Lockie SH, Turner N, Warren A, Cooney G, Oldfield B, Clarke S, Robertson G (2012) Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res 72:4372–4382. https://doi.org/10.1158/0008-5472.CAN-11-3536

    Article  CAS  PubMed  Google Scholar 

  80. Inadera H, Nagai S, Dong HY, Matsushima K (2002) Molecular analysis of lipid-depleting factor in a colon-26-inoculated cancer cachexia model. Int J Cancer 101:37–45. https://doi.org/10.1002/ijc.10578

    Article  CAS  PubMed  Google Scholar 

  81. Grant RW, Stephens JM (2015) Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. Am J Physiol Endocrinol Metab 309:E205–E213. https://doi.org/10.1152/ajpendo.00053.2015

    Article  CAS  PubMed  Google Scholar 

  82. Cannon TY, Guttridge D, Dahlman J, George JR, Lai V, Shores C, Buzkova P, Couch ME (2007) The effect of altered Toll-like receptor 4 signaling on cancer cachexia. Arch Otolaryngol Head Neck Surg 133:1263–1269. https://doi.org/10.1001/archotol.133.12.1263

    Article  PubMed  Google Scholar 

  83. Bohnert KR, Goli P, Roy A, Sharma AK, Xiong G, Gallot YS, Kumar A (2019) The toll-like receptor/MyD88/XBP1 signaling axis mediates skeletal muscle wasting during cancer cachexia. Mol Cell Biol. https://doi.org/10.1128/MCB.00184-19

    Article  PubMed  PubMed Central  Google Scholar 

  84. Maccio A, Sanna E, Neri M, Oppi S, Madeddu C (2021) Cachexia as evidence of the mechanisms of resistance and tolerance during the evolution of cancer disease. Int J Mol Sci. https://doi.org/10.3390/ijms22062890

    Article  PubMed  PubMed Central  Google Scholar 

  85. Henriques F, Lopes MA, Franco FO, Knobl P, Santos KB, Bueno LL, Correa VA, Bedard AH, Guilherme A, Birbrair A, Peres SB, Farmer SR, Batista ML Jr (2018) Toll-like receptor-4 disruption suppresses adipose tissue remodeling and increases survival in cancer cachexia syndrome. Sci Rep 8:18024. https://doi.org/10.1038/s41598-018-36626-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP (2019) Cancer takes a toll on skeletal muscle by releasing heat shock proteins-an emerging mechanism of cancer-induced cachexia. Cancers (Basel). https://doi.org/10.3390/cancers11091272

    Article  Google Scholar 

  87. Ishiko O, Nishimura S, Yasui T, Sumi T, Hirai K, Honda K, Ogita S (1999) Metabolic and morphologic characteristics of adipose tissue associated with the growth of malignant tumors. Jpn J Cancer Res 90:655–659. https://doi.org/10.1111/j.1349-7006.1999.tb00797.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Byerley LO, Lee SH, Redmann S, Culberson C, Clemens M, Lively MO (2010) Evidence for a novel serum factor distinct from zinc alpha-2 glycoprotein that promotes body fat loss early in the development of cachexia. Nutr Cancer 62:484–494. https://doi.org/10.1080/01635580903441220

    Article  CAS  PubMed  Google Scholar 

  89. Fouladiun M, Korner U, Bosaeus I, Daneryd P, Hyltander A, Lundholm KG (2005) Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care–correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103:2189–2198. https://doi.org/10.1002/cncr.21013

    Article  PubMed  Google Scholar 

  90. Murphy RA, Wilke MS, Perrine M, Pawlowicz M, Mourtzakis M, Lieffers JR, Maneshgar M, Bruera E, Clandinin MT, Baracos VE, Mazurak VC (2010) Loss of adipose tissue and plasma phospholipids: relationship to survival in advanced cancer patients. Clin Nutr 29:482–487. https://doi.org/10.1016/j.clnu.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  91. Mracek T, Stephens NA, Gao D, Bao Y, Ross JA, Ryden M, Arner P, Trayhurn P, Fearon KC, Bing C (2011) Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br J Cancer 104:441–447. https://doi.org/10.1038/sj.bjc.6606083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nordstrom EA, Ryden M, Backlund EC, Dahlman I, Kaaman M, Blomqvist L, Cannon B, Nedergaard J, Arner P (2005) A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 54:1726–1734. https://doi.org/10.2337/diabetes.54.6.1726

    Article  PubMed  Google Scholar 

  93. Bing C, Russell S, Becket E, Pope M, Tisdale MJ, Trayhurn P, Jenkins JR (2006) Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br J Cancer 95:1028–1037. https://doi.org/10.1038/sj.bjc.6603360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, Kulyte A, Isaksson B, Permert J, Petrovic N, Nedergaard J, Sjolin E, Brodin D, Clement K, Dahlman-Wright K, Ryden M, Arner P (2010) Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer 102:1541–1548. https://doi.org/10.1038/sj.bjc.6605665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ebadi M, Field CJ, Lehner R, Mazurak VC (2017) Chemotherapy diminishes lipid storage capacity of adipose tissue in a preclinical model of colon cancer. Lipids Health Dis 16:247. https://doi.org/10.1186/s12944-017-0638-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Biondo LA, Lima Junior EA, Souza CO, Cruz MM, Cunha RD, Alonso-Vale MI, Oyama LM, Nascimento CM, Pimentel GD, Dos Santos RV, Lira FS, Rosa Neto JC (2016) Impact of doxorubicin treatment on the physiological functions of white adipose tissue. PLoS ONE 11:e0151548. https://doi.org/10.1371/journal.pone.0151548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vergoni B, Cornejo PJ, Gilleron J, Djedaini M, Ceppo F, Jacquel A, Bouget G, Ginet C, Gonzalez T, Maillet J, Dhennin V, Verbanck M, Auberger P, Froguel P, Tanti JF, Cormont M (2016) DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes 65:3062–3074. https://doi.org/10.2337/db16-0014

    Article  CAS  PubMed  Google Scholar 

  98. Biondo LA, Batatinha HA, Souza CO, Teixeira AAS, Silveira LS, Alonso-Vale MI, Oyama LM, Alves MJ, Seelaender M, Neto JCR (2018) Metformin mitigates fibrosis and glucose intolerance induced by doxorubicin in subcutaneous adipose tissue. Front Pharmacol 9:452. https://doi.org/10.3389/fphar.2018.00452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sullivan ES, Daly LE, Bhuachalla ÉB, Cushen SJ, Ryan AM, Power DG (2019) Loss of subcutaneous adipose tissue during chemotherapy predicts reduced survival in patients with incurable colorectal cancer undergoing palliative therapy. Ann Oncol. https://doi.org/10.1093/annonc/mdz246.127

    Article  PubMed  Google Scholar 

  100. Brendle C, Stefan N, Stef I, Ripkens S, Soekler M, la Fougere C, Nikolaou K, Pfannenberg C (2019) Impact of diverse chemotherapeutic agents and external factors on activation of brown adipose tissue in a large patient collective. Sci Rep 9:1901. https://doi.org/10.1038/s41598-018-37924-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shellock FG, Riedinger MS, Fishbein MC (1986) Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 111:82–85. https://doi.org/10.1007/BF00402783

    Article  CAS  PubMed  Google Scholar 

  102. Sun X, Feng X, Wu X, Lu Y, Chen K, Ye Y (2020) Fat wasting is damaging: role of adipose tissue in cancer-associated cachexia. Front Cell Dev Biol 8:33. https://doi.org/10.3389/fcell.2020.00033

    Article  PubMed  PubMed Central  Google Scholar 

  103. Townsend K, Tseng YH (2012) Brown adipose tissue: recent insights into development, metabolic function and therapeutic potential. Adipocyte 1:13–24. https://doi.org/10.4161/adip.18951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108. https://doi.org/10.1038/nature10653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452. https://doi.org/10.1152/ajpendo.00691.2006

    Article  CAS  PubMed  Google Scholar 

  106. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508. https://doi.org/10.1056/NEJMoa0808718

    Article  PubMed  Google Scholar 

  107. Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, Lanske B, Hodin RA, Spiegelman BM (2016) PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab 23:315–323. https://doi.org/10.1016/j.cmet.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  108. Patsouris D, Qi P, Abdullahi A, Stanojcic M, Chen P, Parousis A, Amini-Nik S, Jeschke MG (2015) Burn induces browning of the subcutaneous white adipose tissue in mice and humans. Cell Rep 13:1538–1544. https://doi.org/10.1016/j.celrep.2015.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20:433–447. https://doi.org/10.1016/j.cmet.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  110. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–104. https://doi.org/10.1038/nature13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, Wang L, Wu J, Yuan J, Wang C, Li J, Sun S (2019) Breast cancer-released exosomes trigger cancer-associated cachexia to promote tumor progression. Adipocyte 8:31–45. https://doi.org/10.1080/21623945.2018.1551688

    Article  CAS  PubMed  Google Scholar 

  112. Di W, Zhang W, Zhu B, Li X, Tang Q, Zhou Y (2021) Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J Cell Physiol 236:5399–5410. https://doi.org/10.1002/jcp.30245

    Article  CAS  PubMed  Google Scholar 

  113. Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, Yang H, Sun W, Wang X, Zhu K, Fan Q, Li J, Ying G, Ba Y (2019) Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer 144:2501–2515. https://doi.org/10.1002/ijc.31977

    Article  CAS  PubMed  Google Scholar 

  114. Wang H, Zheng Q, Lu Z, Wang L, Ding L, Xia L, Zhang H, Wang M, Chen Y, Li G (2021) Role of the nervous system in cancers: a review. Cell Death Discov 7:76. https://doi.org/10.1038/s41420-021-00450-y

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71. https://doi.org/10.1038/s41579-020-0433-9

    Article  CAS  PubMed  Google Scholar 

  116. Bindels LB, Neyrinck AM, Claus SP, Le Roy CI, Grangette C, Pot B, Martinez I, Walter J, Cani PD, Delzenne NM (2016) Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J 10:1456–1470. https://doi.org/10.1038/ismej.2015.209

    Article  CAS  PubMed  Google Scholar 

  117. Bindels LB, Neyrinck AM, Loumaye A, Catry E, Walgrave H, Cherbuy C, Leclercq S, Van Hul M, Plovier H, Pachikian B, Bermudez-Humaran LG, Langella P, Cani PD, Thissen JP, Delzenne NM (2018) Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget 9:18224–18238. https://doi.org/10.18632/oncotarget.24804

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ubachs J, Ziemons J, Soons Z, Aarnoutse R, van Dijk DPJ, Penders J, van Helvoort A, Smidt ML, Kruitwagen R, Baade-Corpelijn L, Olde Damink SWM, Rensen SS (2021) Gut microbiota and short-chain fatty acid alterations in cachectic cancer patients. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.12804

    Article  PubMed  PubMed Central  Google Scholar 

  119. Suarez-Zamorano N, Fabbiano S, Chevalier C, Stojanovic O, Colin DJ, Stevanovic A, Veyrat-Durebex C, Tarallo V, Rigo D, Germain S, Ilievska M, Montet X, Seimbille Y, Hapfelmeier S, Trajkovski M (2015) Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med 21:1497–1501. https://doi.org/10.1038/nm.3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tsoli M, Robertson G (2013) Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends Endocrinol Metab 24:174–183. https://doi.org/10.1016/j.tem.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  121. Bauwens M, Wierts R, van Royen B, Bucerius J, Backes W, Mottaghy F, Brans B (2014) Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging 41:776–791. https://doi.org/10.1007/s00259-013-2611-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This manuscript is a part of PhD thesis of Mit Joshi, to be submitted to Nirma University, Ahmedabad, India and authors are thankful to Nirma University for providing required support for the same.

Funding

No funding was received for the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhoomika M. Patel.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, M., Patel, B.M. The burning furnace: Alteration in lipid metabolism in cancer-associated cachexia. Mol Cell Biochem 477, 1709–1723 (2022). https://doi.org/10.1007/s11010-022-04398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04398-0

Keywords

Navigation